A070982 Smallest integer k such that n divides sigma(k).
1, 3, 2, 3, 8, 5, 4, 7, 10, 19, 43, 6, 9, 12, 8, 21, 67, 10, 37, 19, 20, 43, 137, 14, 149, 45, 34, 12, 173, 24, 16, 21, 86, 67, 76, 22, 73, 37, 18, 27, 163, 20, 257, 43, 40, 137, 281, 33, 52, 149, 101, 63, 211, 34, 109, 28, 49, 173, 353, 24, 169, 48, 32, 93, 72, 86, 401
Offset: 1
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- József Sándor, The sum-of-divisors minimum and maximum functions, Research Report Collection, Volume 8, Issue 1, 2005. See p. 3.
Crossrefs
Programs
-
Mathematica
a = ConstantArray[1, 67]; k = 1; While[Length[vac = Rest[Flatten[Position[a, 1]]]] > 0, k++; a[[Intersection[Divisors[DivisorSigma[1, k]], vac]]] *= k]; a (* Ivan Neretin, May 15 2015 *) With[{dsk=Table[{k,DivisorSigma[1,k]},{k,500}]},Table[SelectFirst[ dsk, Divisible[#[[2]],n]&],{n,70}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2018 *)
-
PARI
a(n)=my(s); while(sigma(s++)%n, ); s
Formula
a(n) = min( k : sigma(k) == 0 mod(n) ).
Sum(k=1, n, a(k)) seems to be asymptotic to c*n^2 with probably 1.1 < c < 1.2.
By Xylouris' form of Linnk's theorem, a(n) << n^5. Can this be improved? - Charles R Greathouse IV, Mar 09 2017