cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A281048 Expansion of x*(1 - x)*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))).

Original entry on oeis.org

1, 0, -1, 1, -2, 1, 1, 0, -3, 1, 2, -1, 1, 0, -1, 1, -4, 1, 3, -2, 3, -1, -2, 1, 1, 0, -1, 1, -2, 1, 1, 0, -5, 1, 4, -3, 5, -2, -3, 1, 4, -1, -3, 2, -3, 1, 2, -1, 1, 0, -1, 1, -2, 1, 1, 0, -3, 1, 2, -1, 1, 0, -1, 1, -6, 1, 5, -4, 7, -3, -4, 1, 7, -2, -5, 3, -4, 1, 3, -2, 5, -1, -4, 3, -5, 2, 3, -1, -4, 1, 3, -2, 3, -1, -2, 1, 1, 0, -1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 27 2017

Keywords

Comments

First differences of A005590.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x (1 - x) Product[1 + x^2^k - x^2^(k + 1), {k, 0, 15}], {x, 0, 100}], x]]
    Differences[a[0] = 0; a[1] = 1; a[n_] := a[n] = If[OddQ[n], a[(n-1)/2 + 1] - a[(n-1)/2], a[n/2]]; Table[a[n], {n, 0, 100}]]

Formula

G.f.: x*(1 - x)*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))).

A283104 Second differences of Stern's diatomic sequence (A002487).

Original entry on oeis.org

-1, 1, -2, 3, -3, 2, -3, 5, -4, 3, -5, 6, -5, 3, -4, 7, -5, 4, -7, 9, -8, 5, -7, 10, -7, 5, -8, 9, -7, 4, -5, 9, -6, 5, -9, 12, -11, 7, -10, 15, -11, 8, -13, 15, -12, 7, -9, 14, -9, 7, -12, 15, -13, 8, -11, 15, -10, 7, -11, 12, -9, 5, -6, 11, -7, 6, -11, 15, -14, 9, -13, 20, -15, 11, -18, 21, -17, 10, -13, 21, -14, 11, -19
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Table[a[n], {n, 0, 84}], 2]
    CoefficientList[Series[-1/x + ((1 - x)^2/x) Product[1 + x^2^k + x^2^(k + 1), {k, 0, 20}], {x, 0, 82}], x]

Formula

G.f.: -1/x + ((1 - x)^2/x)*Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))).

A309014 a(n) = Sum_{k=0..n} (-1)^(n-k) * (Stirling2(n,k) mod 2).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 1, 2, 3, 1, 2, 3, 3, 2, 1, 3, 4, 1, 3, 4, 5, 3, 2, 5, 5, 2, 3, 5, 4, 3, 1, 4, 5, 1, 4, 5, 7, 4, 3, 7, 8, 3, 5, 8, 7, 5, 2, 7, 7, 2, 5, 7, 8, 5, 3, 8, 7, 3, 4, 7, 5, 4, 1, 5, 6, 1, 5, 6, 9, 5, 4, 9, 11, 4, 7, 11, 10, 7, 3, 10, 11, 3, 8, 11, 13, 8, 5, 13, 12, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Mod[StirlingS2[n, k], 2], {k, 0, n}], {n, 0, 90}]
    nmax = 90; CoefficientList[Series[1 + x (1 + x^3) Product[(1 + x^(2^k) + x^(2^(k + 1))), {k, 1, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * (stirling(n,k,2) % 2)); \\ Michel Marcus, Jul 06 2019

Formula

G.f.: 1 + x * (1 + x^3) * Product_{k>=1} (1 + x^(2^k) + x^(2^(k+1))).
a(0) = 1; a(2*k+1) = A002487(k+1); a(2*k+2) = A002487(k).
Showing 1-3 of 3 results.