A281048 Expansion of x*(1 - x)*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))).
1, 0, -1, 1, -2, 1, 1, 0, -3, 1, 2, -1, 1, 0, -1, 1, -4, 1, 3, -2, 3, -1, -2, 1, 1, 0, -1, 1, -2, 1, 1, 0, -5, 1, 4, -3, 5, -2, -3, 1, 4, -1, -3, 2, -3, 1, 2, -1, 1, 0, -1, 1, -2, 1, 1, 0, -3, 1, 2, -1, 1, 0, -1, 1, -6, 1, 5, -4, 7, -3, -4, 1, 7, -2, -5, 3, -4, 1, 3, -2, 5, -1, -4, 3, -5, 2, 3, -1, -4, 1, 3, -2, 3, -1, -2, 1, 1, 0, -1, 1
Offset: 1
Keywords
Links
- Michael Gilleland, Some Self-Similar Integer Sequences
- Ilya Gutkovskiy, Extended graphical example
- R. Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
Programs
-
Mathematica
Rest[CoefficientList[Series[x (1 - x) Product[1 + x^2^k - x^2^(k + 1), {k, 0, 15}], {x, 0, 100}], x]] Differences[a[0] = 0; a[1] = 1; a[n_] := a[n] = If[OddQ[n], a[(n-1)/2 + 1] - a[(n-1)/2], a[n/2]]; Table[a[n], {n, 0, 100}]]
Formula
G.f.: x*(1 - x)*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))).
Comments