A071028 Triangle read by rows giving successive states of cellular automaton generated by "Rule 50".
1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0, 1; 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; - _Philippe Deléham_, Mar 23 2014
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
Links
- Robert Price, Table of n, a(n) for n = 0..9999
- C. J. Glasby, S. P. Glasby, and F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076.
- Eric Weisstein's World of Mathematics, Rule 250
- Michael Williams, Collatz conjecture: an order isomorphic recursive machine, ResearchGate (2024). See pp. 8, 13.
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
Crossrefs
Cf. A071797.
Programs
-
Mathematica
rows = 10; ca = CellularAutomaton[50, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, rows-k+1 ;; rows+k-1]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
Formula
a(n) = n - 1 + floor(sqrt(n)) - 2*Sum_{k=1..n-1} a(k) for n >= 1. - Benoit Cloitre, Jan 24 2013
a(n) = A071797(n) (mod 2). - Boris Putievskiy, Jul 24 2013
a(n) = (1+(-1)^(Sum_{k=1..floor(n/2)} floor((n-k)/k)))/2. - Wesley Ivan Hurt, Dec 25 2020
Comments