A071126 Length of least repunit which is a multiple of the n-th prime, or 0 if no such multiple exists.
0, 3, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96, 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228, 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, 141, 146, 153, 155, 312, 79, 110
Offset: 1
Keywords
Examples
The 13th prime, 41, divides the repunit 11111, the smallest among all R(5k) which are multiples of 41.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1000
- P. De Geest, Repunits and Their Factors
- Amarnath Murthy, On the divisors of Smarandache Unary Sequence, Smarandache Notions Journal, Vol. 11, 2000.
- A. A. A. Steward, Factorization of Repunits[up to R(196)]. Cached copy, Sep 25 2000.
- Michael De Vlieger, Records and positions in first 1000 terms of A071126
Programs
-
Mathematica
Table[Function[p, If[Divisible[10, p], 0, k = {1}; While[! Divisible[ FromDigits@ k, p], AppendTo[k, 1]]; Length@ k]]@ Prime@ n, {n, 67}] (* Michael De Vlieger, May 20 2017 *)
-
Python
from sympy import prime from itertools import count def a(n): if n == 1 or n == 3: return 0 pn = prime(n) return next(k for k in count(1) if 10**k//9%pn == 0) print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Jul 24 2025
Comments