cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077574 Duplicate of A071126.

Original entry on oeis.org

0, 3, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96, 4, 34
Offset: 1

Views

Author

Keywords

A002371 Period of decimal expansion of 1/(n-th prime) (0 by convention for the primes 2 and 5).

Original entry on oeis.org

0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96, 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228, 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, 141, 146, 153, 155, 312, 79, 110
Offset: 1

Views

Author

Keywords

Comments

a(n) is the minimum solution x of modular equation 10^x == 1 (mod p), where p = prime(n). - Carmine Suriano, Oct 10 2012
a(n) = smallest m such that 111...11 (m 1's) is divisible by the n-th prime, or 0 if no such m exists (with the exception that a(2) = 3 instead of 1). E.g., the 5th prime, 11, divides 11, so a(5) = 2. - N. J. A. Sloane, Oct 03 2013 [Comment corrected by Derek Orr, Jun 14 2014]
Numbers n such that A071126(n) = A000040(n) - 1. - Hugo Pfoertner, Mar 18 2003
Except for n = 1 and 3, a(n) divides A006093(n). - Robert Israel, Jul 15 2016

Examples

			A002371(11) = 15 because the 11th prime is 31, and 1/31 = 0.03225806451612903225806451612903225806452... has period 15. - _Richard F. Lyon_, Mar 29 2022
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309. ISBN 0-486-21096-0.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, 1996, p. 162. ISBN 978-0-387-97993-9.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A048595 for another version. Cf. A006883, A007732, A051626, A071126, A000040, A002275, A097443.
Cf. A001913 (full repetend primes), A060257 (1/prime(n) has period prime(n) - 1).

Programs

  • Maple
    seq(subs(FAIL=0,numtheory:-order(10, ithprime(n))),n=1..100); # Robert Israel, Jul 15 2016
  • Mathematica
    Table[ Length[ RealDigits[1 / Prime[n]] [[1, 1]]], {n, 1, 70}]
    Table[If[IntegerQ[#], #, 0] &[MultiplicativeOrder[10, Prime[n]]], {n, 1, 70}] (* Jan Mangaldan, Jul 07 2020 *)
  • PARI
    a(n)=if(n<4,n==2,znorder(Mod(10, prime(n))))
    
  • Python
    from sympy import prime, n_order
    def A002371(n): return 0 if n == 1 or n == 3 else n_order(10,prime(n)) # Chai Wah Wu, Feb 07 2022

Formula

From Alexander Adamchuk, Jan 28 2007: (Start)
a(A000720(p)) = p - 1 for primes p in A001913.
a(A060257(n)) = prime(A060257(n)) - 1. (End)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)
Edited by Charles R Greathouse IV, Mar 24 2010

A001914 Cyclic numbers: 10 is a quadratic residue modulo p and class of mantissa is 2.

Original entry on oeis.org

2, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599, 601, 631, 653, 677, 683, 719, 761, 787, 827, 839, 877, 881, 883, 911, 919, 929, 947, 991
Offset: 1

Views

Author

Keywords

Comments

Also, apart from first term 2, primes p for which the repunit (A002275) R((p-1)/2)=(10^((p-1)/2)-1)/9 is the smallest repunit divisible by p. Primes for which A000040(n) = 2*A071126(n) + 1. - Hugo Pfoertner, Mar 18 2003, Sep 18 2018

Examples

			The repunit R(6)=111111 is the smallest repunit divisible by the prime a(2)=13=2*6+1.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966. Pages 65, 309.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003277 for another sequence of cyclic numbers.

Programs

  • PARI
    R(n)=(10^n-1)/9;
    print1(2,", "); forprime(p=3, 1000, m=0; for(q=3, (p-1)/2-1, if(R(q)%p==0, m=1; break));if(m==0&&R((p-1)/2)%p==0, print1(p,", "))) \\ Hugo Pfoertner, Sep 18 2018

Extensions

More terms from Enoch Haga

A077573 Smallest number of the form (10^k -1)/9 == 0 (mod prime(n)). with a(1) = a(3) = 0.

Original entry on oeis.org

0, 111, 0, 111111, 11, 111111, 1111111111111111, 111111111111111111, 1111111111111111111111, 1111111111111111111111111111, 111111111111111, 111, 11111, 111111111111111111111, 1111111111111111111111111111111111111111111111
Offset: 1

Views

Author

Amarnath Murthy, Nov 11 2002

Keywords

Comments

For every prime p > 5, {10^(p-1) -1}/9 == 0 (mod p), by Fermat's Little theorem.

References

  • Amarnath Murthy, On the divisors of Smarandache Unary Sequence. Smarandache Notions Journal, Vol. 11, 2000.

Crossrefs

Cf. A071126.

Extensions

More terms from Sascha Kurz, Jan 04 2003

A212528 The periodic part of the decimal expansion of prime(n-1) / prime(n).

Original entry on oeis.org

6, 0, 714285, 63, 846153, 7647058823529411, 894736842105263157, 8260869565217391304347, 7931034482758620689655172413, 935483870967741, 837, 90243, 953488372093023255813, 9148936170212765957446808510638297872340425531, 8867924528301
Offset: 2

Views

Author

Jaroslav Krizek, Jun 29 2012

Keywords

Comments

Number of digits of the periodic parts for n>=3 in A002371, A048595 and A071126.

Crossrefs

Programs

  • Mathematica
    Table[If[n == 3, 0, FromDigits[RealDigits[Prime[n-1]/Prime[n]][[1,1]]]], {n, 2, 10}]

Extensions

Corrected by T. D. Noe, Jun 29 2012

A077575 a(n) = A077573(n)/prime(n).

Original entry on oeis.org

0, 37, 0, 15873, 1, 8547, 65359477124183, 5847953216374269, 48309178743961352657, 38314176245210727969348659, 3584229390681, 3, 271, 2583979328165374677, 23640661938534278959810874704491725768321513
Offset: 1

Views

Author

Amarnath Murthy, Nov 11 2002

Keywords

Comments

Product a(n)*Prime(n) = a repunit.

References

  • Amarnath Murthy, On the divisors of Smarandache Unary Sequence. Smarandache Notions Journal, Vol. 11, 2000.

Crossrefs

Extensions

More terms from Ray G. Opao, Nov 02 2004
Showing 1-6 of 6 results.