A071139 Numbers k such that the sum of distinct primes dividing k is divisible by the largest prime dividing k.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 70, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 120, 121, 125, 127, 128, 131, 137, 139, 140, 149, 150, 151, 157, 163, 167, 169, 173, 179, 180
Offset: 1
Keywords
Examples
30 = 2*3*5; sum of distinct prime factors is 2+3+5 = 10, which is divisible by 5, so 30 is a term; 2181270 = 2*3*5*7*13*17*47; sum of distinct prime factors is 2+3+5+7+13+17+47 = 94, which is divisible by 47, so 2181270 is a term.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a071139 n = a071139_list !! (n-1) a071139_list = filter (\x -> a008472 x `mod` a006530 x == 0) [2..] -- Reinhard Zumkeller, Apr 18 2013
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=sb[n]/ma[n]; If[IntegerQ[s], Print[{n, ba[n]}]], {n, 2, 1000000}]
-
PARI
isok(n) = if (n != 1, my(f=factor(n)[,1]); (sum(k=1, #f~, f[k]) % vecmax(f)) == 0); \\ Michel Marcus, Jul 09 2018
Extensions
Edited by Jon E. Schoenfield, Jul 08 2018
Comments