A071140 Numbers n such that sum of distinct primes dividing n is divisible by largest prime dividing n; n is neither a prime, nor a true power of prime.
30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2160, 2240, 2250
Offset: 1
Keywords
Examples
n = 70 = 2*5*7 has a form of 2pq, where p and q are twin primes; n = 3135 = 3*5*11*19, sum = 3+5+11+19 = 38 = 2*19, divisible by 19.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a071140 n = a071140_list !! (n-1) a071140_list = filter (\x -> a008472 x `mod` a006530 x == 0) a024619_list -- Reinhard Zumkeller, Apr 18 2013
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Greater[s, 1], Print[{n, ba[n]}]], {n, 2, 1000000}] (* Second program: *) Select[Range@ 2250, And[Length@ # > 1, Divisible[Total@ #, Last@ #]] &[FactorInteger[#][[All, 1]] ] &] (* Michael De Vlieger, Jul 18 2017 *)
Comments