cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071172 Number of squarefree integers <= 10^n.

Original entry on oeis.org

1, 7, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, 60792710280, 607927102274, 6079271018294, 60792710185947, 607927101854103, 6079271018540405, 60792710185403794, 607927101854022750, 6079271018540280875, 60792710185402613302, 607927101854026645617
Offset: 0

Views

Author

Robert G. Wilson v, Jun 10 2002

Keywords

Comments

The limit of a(n)/10^n is 6/Pi^2 (see A059956). - Gerard P. Michon, Apr 30 2009

Crossrefs

Apart from first two terms, same as A053462.
Binary counterpart is A143658. - Gerard P. Michon, Apr 30 2009

Programs

  • Mathematica
    f[n_] := Sum[ MoebiusMu[i]Floor[n/i^2], {i, Sqrt@ n}]; Table[ f[10^n], {n, 0, 14}] (* Robert G. Wilson v, Aug 04 2012 *)
  • PARI
    a(n)=sum(d=1,sqrtint(n=10^n),moebius(d)*n\d^2) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(s); forsquarefree(d=1,sqrtint(n=10^n), s += n\d[1]^2 * moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A071172(n): return sum(mobius(k)*(10**n//k**2) for k in range(1,isqrt(10**n)+1)) # Chai Wah Wu, May 10 2024

Formula

a(n) = Sum_{i=1..10^(n/2)} A008683(i)*floor(10^n/i^2). - Gerard P. Michon, Apr 30 2009

Extensions

Extended by Eric W. Weisstein, Sep 14 2003
3 more terms from Jud McCranie, Sep 01 2005
4 more terms from Gerard P. Michon, Apr 30 2009