A071172 Number of squarefree integers <= 10^n.
1, 7, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, 60792710280, 607927102274, 6079271018294, 60792710185947, 607927101854103, 6079271018540405, 60792710185403794, 607927101854022750, 6079271018540280875, 60792710185402613302, 607927101854026645617
Offset: 0
Keywords
Links
- J. Pawlewicz, Table of n, a(n) for n = 0..36
- W. Hürlimann, A First Digit Theorem for Square-Free Integer Powers, Pure Mathematical Sciences, Vol. 3, 2014, no. 3, 129 - 139 HIKARI Ltd.
- G. P. Michon, On the number of squarefree integers not exceeding N. - _Gerard P. Michon_, Apr 30 2009
- J. Pawlewicz, Counting square-free numbers, arXiv preprint arXiv:1107.4890 [math.NT], 2011.
- Eric Weisstein's World of Mathematics, Squarefree
Crossrefs
Apart from first two terms, same as A053462.
Binary counterpart is A143658. - Gerard P. Michon, Apr 30 2009
Programs
-
Mathematica
f[n_] := Sum[ MoebiusMu[i]Floor[n/i^2], {i, Sqrt@ n}]; Table[ f[10^n], {n, 0, 14}] (* Robert G. Wilson v, Aug 04 2012 *)
-
PARI
a(n)=sum(d=1,sqrtint(n=10^n),moebius(d)*n\d^2) \\ Charles R Greathouse IV, Nov 14 2012
-
PARI
a(n)=my(s); forsquarefree(d=1,sqrtint(n=10^n), s += n\d[1]^2 * moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
-
Python
from math import isqrt from sympy import mobius def A071172(n): return sum(mobius(k)*(10**n//k**2) for k in range(1,isqrt(10**n)+1)) # Chai Wah Wu, May 10 2024
Formula
a(n) = Sum_{i=1..10^(n/2)} A008683(i)*floor(10^n/i^2). - Gerard P. Michon, Apr 30 2009
Extensions
Extended by Eric W. Weisstein, Sep 14 2003
3 more terms from Jud McCranie, Sep 01 2005
4 more terms from Gerard P. Michon, Apr 30 2009
Comments