A071175 Numbers whose product of exponents is equal to the sum of prime factors.
4, 27, 96, 486, 640, 1440, 2025, 2400, 2744, 3024, 3125, 3528, 3584, 4032, 4536, 4860, 5292, 5625, 9408, 11907, 12150, 12348, 14256, 15360, 16464, 17424, 20412, 22400, 22464, 25344, 31360, 32805, 36504, 37500, 39204, 55566, 56250, 57624, 59904, 70304, 71442
Offset: 1
Examples
55566 = 2^1 * 3^4 * 7^3 and 1*4*3 = 2+3+7 hence 55566 is in the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Total[(f = FactorInteger[n])[[;; , 1]]] == Times @@ f[[;; , 2]]; Select[Range[2, 10^5], q] (* Amiram Eldar, Jun 24 2022 *)
-
PARI
for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),2),i))==sum(i=1,o, component(component(factor(n),1),i)),print1(n,",")))
-
Python
from math import prod from sympy import factorint def ok(n): f = factorint(n); return prod(f[p] for p in f)==sum(p for p in f) print(list(filter(ok, range(10**5)))) # Michael S. Branicky, Apr 27 2021
Comments