cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071175 Numbers whose product of exponents is equal to the sum of prime factors.

Original entry on oeis.org

4, 27, 96, 486, 640, 1440, 2025, 2400, 2744, 3024, 3125, 3528, 3584, 4032, 4536, 4860, 5292, 5625, 9408, 11907, 12150, 12348, 14256, 15360, 16464, 17424, 20412, 22400, 22464, 25344, 31360, 32805, 36504, 37500, 39204, 55566, 56250, 57624, 59904, 70304, 71442
Offset: 1

Views

Author

Benoit Cloitre, Jun 10 2002

Keywords

Comments

Number k such that A005361(k) = A008472(k). - Amiram Eldar, Jun 24 2022

Examples

			55566 = 2^1 * 3^4 * 7^3 and 1*4*3 = 2+3+7 hence 55566 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Total[(f = FactorInteger[n])[[;; , 1]]] == Times @@ f[[;; , 2]]; Select[Range[2, 10^5], q] (* Amiram Eldar, Jun 24 2022 *)
  • PARI
    for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),2),i))==sum(i=1,o, component(component(factor(n),1),i)),print1(n,",")))
    
  • Python
    from math import prod
    from sympy import factorint
    def ok(n): f = factorint(n); return prod(f[p] for p in f)==sum(p for p in f)
    print(list(filter(ok, range(10**5)))) # Michael S. Branicky, Apr 27 2021