cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A202063 Position of first appearance of n-th prime in A071216.

Original entry on oeis.org

2, 3, 1, 8, 25, 9, 11, 21, 19, 69, 24, 29, 46, 23, 60, 115, 51, 111, 32, 82, 129, 185, 132, 71, 106, 155, 63, 116, 84, 203, 54, 77, 58, 145, 108, 87, 289, 93, 67, 443, 254, 460, 292, 76, 350, 300, 447, 86, 397, 124, 284, 808, 128, 335, 136, 547, 742, 361
Offset: 1

Views

Author

Zak Seidov, Dec 10 2011

Keywords

Crossrefs

Cf. A071216 (largest prime factor of sum of 2 successive primes).

Formula

a(n) = primepi(A188815(n)) (conjectured). - Michel Marcus, Jul 05 2017

A071215 Number of distinct prime factors of sum of 2 successive primes.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 2, 2, 3, 1, 3, 2, 2, 2, 2, 3, 3, 3, 4, 2, 3, 3, 3, 2, 3, 2, 3, 3, 2, 4, 3, 2, 3, 3, 2, 4, 3, 3, 3, 3, 3, 4, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 3, 4, 3, 3, 4, 3, 2, 2, 3, 2, 3, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, 4, 3
Offset: 1

Views

Author

Labos Elemer, May 17 2002

Keywords

Examples

			Prime(6) = 13 and prime(7) = 17. 13 + 17 = 30 = 2 * 3 * 5, which has three distinct prime factors, hence a(6) = 3.
		

Crossrefs

Cf. A001043, A001221, A071216, A251609 (greedy inverse).

Programs

Formula

a(n) = omega(prime(n) + prime(n + 1)) = A001221(A001043(n)), where omega is the number of distinct prime factors function.

A230518 Smallest prime p = a(n) such that the sum of p and the next prime has n distinct prime factors.

Original entry on oeis.org

2, 5, 13, 103, 1783, 15013, 285283, 9699667, 140645501, 4127218087, 100280245063, 5625398263453, 202666375276361, 11602324073775431, 438272504610946003, 21828587281891445047, 1156915125940246587913, 66595945348137856405747, 4632891063696575353839163
Offset: 1

Views

Author

Jean-François Alcover, Oct 22 2013

Keywords

Examples

			30 = 13+17 is the earliest case with 3 prime divisors, so a(3) = 13.
		

Crossrefs

Programs

  • Mathematica
    Clear[a]; a[_] = 0; Do[p = Prime[k]; q = Prime[k+1]; n = PrimeNu[p+q]; If[a[n] == 0, a[n] = p; Print["a(", n, ") = p = ", p, ", q = ", q]], {k, 1, 10^9}]; Table[a[n], {n, 1, 10}]
  • PARI
    a(n) = {p = 2; while (omega(p+nextprime(p+1)) != n, p = nextprime(p+1)); p;} \\ Michel Marcus, Oct 22 2013
    
  • PARI
    step(Fvec)=my([n,f]=Fvec,v=List(),t);for(i=1,#f~,t=f;t[i,2]++;listput(v,[n*f[i,1],t]);t=f;t[i,1]=nextprime(t[i,1]+1);if(i==#f~||t[i,1]1,1,prime(i))),v=[[factorback(f),f]],t); if(!bad(v[1][1]),return(precprime(v[1][1]/2))); v=vecsort(step(v[1]),1); while(bad(v[1][1]), v=vecsort(concat(step(v[1]),v[2..#v]),1,8)); precprime(v[1][1]/2); \\ Charles R Greathouse IV, Oct 22 2013

Formula

a(n) > (1/2 + o(1)) n^n. - Charles R Greathouse IV, Oct 22 2013

Extensions

a(11)-a(19) from Charles R Greathouse IV, Oct 22 2013

A071217 Numbers k such that the largest prime factor of the sum of successive primes p(k) + p(k+1) is greater than k.

Original entry on oeis.org

1, 9, 11, 12, 19, 23, 24, 29, 31, 32, 51, 54, 58, 63, 67, 71, 75, 76, 77, 84, 86, 87, 93, 95, 97, 103, 108, 110, 124, 128, 136, 151, 158, 159, 164, 169, 188, 191, 192, 200, 202, 205, 208, 210, 211, 216, 227, 232, 241, 243, 245, 246, 247, 252, 265, 273, 278, 282
Offset: 1

Views

Author

Labos Elemer, May 17 2002

Keywords

Examples

			p(9) + p(10) = 23 + 29 = 52 = 2*2*13 and 13 > 10, so index 9 is here; it is the 2nd term.
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=pf[Prime[n+1]+Prime[n]]; If[Greater[s, n], Print[n]], {n, 1, 1000}]

Formula

A071216(k) > k.

A071218 Numbers k such that the largest prime factor of the sum of the two consecutive primes prime(k) + prime(k+1) is at most k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 28, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 74, 78, 79, 80, 81, 82, 83, 85, 88, 89, 90, 91, 92, 94
Offset: 1

Views

Author

Labos Elemer, May 17 2002

Keywords

Examples

			k=25: prime(25) + prime(26) = 97 + 101 = 198 = 2*3*3*11 and 11 < 25, so 25 is in this sequence;
		

Crossrefs

Programs

  • Mathematica
    Select[Range[94], FactorInteger[Prime[#] + Prime[# + 1]][[-1, 1]] <= # &] (* Giovanni Resta, Jul 13 2018 *)
  • PARI
    isok(n) = vecmax(factor(prime(n)+prime(n+1))[,1]) <= n; \\ Michel Marcus, Jul 09 2018

Formula

If A071216(k) <= k, then k is in this sequence.

Extensions

Edited by Jon E. Schoenfield, Jul 08 2018

A071219 Numbers m such that the largest prime factor of prime(m) + prime(m+1) equals m.

Original entry on oeis.org

2, 3, 439
Offset: 1

Views

Author

Labos Elemer, May 17 2002

Keywords

Comments

a(4), if it exists, is larger than 10^7.
a(4) > 5*10^14, if it exists. - Giovanni Resta, Jul 14 2018

Examples

			Numbers x such that A006530(A001043(x)) = x.
x = 2 is a term: p(2) + p(3) = 3 + 5 = 8 with largest factor = 2 = x.
x = 3 is a term: p(3) + p(4) = 5 + 7 = 12 with largest factor = 3 = x.
x = 439 is a term: p(439) + p(440) = 3067 + 3079 = 6146 = 2*7*439 = 14x.
		

Crossrefs

Programs

  • Mathematica
    DeleteCases[#, 0] &@ MapIndexed[Boole[#1 == First@ #2] First@ #2 &, Map[FactorInteger[Total@ #][[-1, 1]] &, Partition[Prime@ Range[10^6], 2, 1]]] (* Michael De Vlieger, Aug 09 2017 *)

Extensions

Edited by N. J. A. Sloane, Aug 09 2017

A076559 Greatest prime divisor of n-th interprime: (prime(n) + prime(n+1))/2.

Original entry on oeis.org

2, 3, 3, 3, 5, 3, 7, 13, 5, 17, 13, 7, 5, 5, 7, 5, 2, 23, 3, 19, 3, 43, 31, 11, 17, 7, 3, 37, 5, 43, 67, 23, 3, 5, 11, 5, 11, 17, 11, 5, 31, 3, 13, 11, 41, 31, 5, 19, 11, 59, 5, 41, 127, 13, 19, 5, 137, 31, 47, 3, 5, 103, 13, 7, 3, 167, 19, 29, 13, 89, 11, 37, 47, 127, 193, 131, 19
Offset: 2

Views

Author

Zak Seidov, Oct 19 2002

Keywords

Crossrefs

Cf. A071216.

Programs

  • Maple
    A076559 := proc(n)
        A006530((ithprime(n)+ithprime(n+1))/2) ;
    end proc:
    seq(A076559(n),n=2..120) ;  # R. J. Mathar, May 10 2023
  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; p = Select[Range[405], PrimeQ]; gpf /@ ((p[[2 ;; -2]] + p[[3 ;; -1]])/2) (* Amiram Eldar, Aug 29 2019 *)

Formula

a(n) = A006530(A024675(n-1)). - R. J. Mathar, May 10 2023

A361170 The leading column of the table of primes in the top row and subsequent rows defined by the GPF of Pascal-alike sums of previous rows.

Original entry on oeis.org

2, 5, 7, 3, 5, 5, 3, 2, 3, 3, 2, 7, 3, 2, 7, 3, 5, 2, 7, 3, 5, 3, 5, 5, 3, 2, 7, 7, 7, 5, 7, 5, 2, 7, 7, 3, 5, 7, 3, 2, 2, 2, 2, 7, 3, 5, 3, 3, 2, 3, 2, 2, 3, 2, 7, 3, 2, 7, 7, 5, 5, 7, 3, 2, 3, 3, 2, 5, 2, 7, 7, 3, 5, 3, 2, 2, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2
Offset: 1

Views

Author

R. J. Mathar, May 10 2023

Keywords

Examples

			The table starts
  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
  5  2  3  3  3  5  3  7 13  5 17 13  7  5  5  7  5  2 23  3
  7  5  3  3  2  2  5  5  3 11  5  5  3  5  3  3  7  5 13 11
  3  2  3  5  2  7  5  2  7  2  5  2  2  2  3  5  3  3  3 11
  5  5  2  7  3  3  7  3  3  7  7  2  2  5  2  2  3  3  7  7
  5  7  3  5  3  5  5  3  5  7  3  2  7  7  2  5  3  5  7  3
  3  5  2  2  2  5  2  2  3  5  5  3  7  3  7  2  2  3  5  2
  2  7  2  2  7  7  2  5  2  5  2  5  5  5  3  2  5  2  7  5
		

Crossrefs

Cf. A006530, A071216 (row n=2).

Programs

  • Maple
    T361170 := proc(n,k)
        option remember ;
        if n = 1 then
            ithprime(k) ;
        else
            A006530(procname(n-1,k+1)+procname(n-1,k)) ;
        end if;
    end proc:
    A361170 := proc(n)
        T361170(n,1) ;
    end proc:
    seq(A361170(n),n=1..120) ;

Formula

a(n) = T(n,1) where T(1,k) = prime(k), T(n,k) = A006530( T(n-1,k+1) + T(n-1,k)).
Showing 1-8 of 8 results.