cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A369020 Numbers k such that k and k+1 have the same maximal exponent in their prime factorization.

Original entry on oeis.org

2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 99, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2024

Keywords

Comments

Differs from A358817 by having the terms 99, 165, 166, ..., which are not in A358817, and not having the terms 1, 440, 1331, 1575, ..., which are in A358817.
Numbers k such that A051903(k) = A051903(k+1).
If k is a term then k*(k+1) is a term of A362605.
The asymptotic density of this sequence is d(2) + Sum_{k>=2} (d(k) + d(k+1) - 2 * d2(k)) = 0.36939178586283962461..., where d(k) = Product_{p prime} (1 - 2/p^k) and d2(k) = Product_{p prime} (1 - 1/p^k - 1/p^(k+1)).

Crossrefs

Programs

  • Mathematica
    emax[n_] := emax[n] = Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; Select[Range[200], emax[#] == emax[# + 1] &]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2]));
    lista(kmax) = {my(e1 = 0, e2); for(k = 2, kmax, e2 = emax(k); if(e1 == e2, print1(k-1, ", ")); e1 = e2);}

A071319 First of 3 consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that {k, k+1, k+2} are in A067259.

Original entry on oeis.org

98, 475, 548, 603, 724, 844, 845, 1274, 1420, 1681, 1682, 1924, 2275, 2523, 2890, 3283, 3474, 3548, 3626, 3716, 4148, 4203, 4418, 4475, 4850, 4923, 4948, 5202, 5274, 5490, 5524, 5634, 5948, 6650, 6811, 6956, 7299, 7324, 7442, 7514, 7675, 8107, 8348
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 1, 7, 55, 570, 5628, 56174, 562151, 5621119, 56209006, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00562... . - Amiram Eldar, Jan 18 2023
The asymptotic density of this sequence is Product_{p prime} (1 - 3/p^3) - 3 * Product_{p prime} (1 - 1/p^2 - 2/p^3) + 3 * Product_{p prime} (1 - 2/p^2 - 1/p^3) - Product_{p prime} (1 - 3/p^2) = 0.0056209097169531390208... . - Amiram Eldar, Jan 12 2024

Examples

			98 is a term since 98 = 2*7^2, 99 = 3^2*11, and 100 = 2^2*5^2.
		

Crossrefs

Subsequence of A067259 and A071318.

Programs

  • Mathematica
    With[{s = Select[Range[10^4], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2) && (vecmax(factor(n+2)[, 2])==2); \\ Michel Marcus, Aug 02 2017

Formula

A051903(k) = A051903(k+1) = A051903(k+2) = 2 when k is a term.

A367695 Numbers k such that k and k+1 are both exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 5, 6, 7, 10, 13, 14, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 46, 53, 54, 55, 56, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 87, 88, 93, 94, 95, 96, 101, 102, 103, 104, 105, 106, 109, 110, 113, 114, 118, 119, 122, 127, 128
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 48, 478, 4734, 47195, 471707, 4716892, 47168363, 471681183, 4716806520, ... . Apparently, the asymptotic density of this sequence exists and equals Product_{p prime} (1 - 2/(p*(p+1))) = 0.47168... (A307868).

Crossrefs

Subsequence of A268335.
Cf. A307868.
Subsequences: A007674, A325058.
Similar sequences: A071318, A121495, A340152, A367696.

Programs

  • Mathematica
    expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; Select[Range[128], And @@ expOddQ /@ {#, # + 1} &]
  • PARI
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if (!(f[i, 2] % 2), return (0))); 1;}
    is(n) = isexpodd(n) && isexpodd(n+1)

A367696 Numbers k such that k and k+1 are both exponentially odious numbers (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 8, 78, 762, 7615, 76113, 761127, 7611222, 76111895, 761119135, 7611190807, ... . Apparently, the asymptotic density of this sequence exists and equals 0.761119... .

Crossrefs

Subsequence of A270428.
Subsequences: A007674, A367697.
Similar sequences: A071318, A121495, A340152, A367695.

Programs

  • Mathematica
    expOdQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &]; Select[Range[100], And @@ expOdQ /@ {#, # + 1} &]
  • PARI
    isexpod(n) = {my(f = factor(n)); for(i=1, #f~, if (!(hammingweight(f[i, 2]) % 2), return (0))); 1;}
    is(n) = isexpod(n) && isexpod(n+1)

A071320 Least of four consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that {k, k+1, k+2, k+3} are in A067259.

Original entry on oeis.org

844, 1681, 8523, 8954, 10050, 10924, 11322, 17404, 19940, 22020, 23762, 24450, 25772, 27547, 30923, 30924, 33172, 34347, 38724, 39050, 39347, 40050, 47673, 47724, 47825, 49147, 54585, 55449, 57474, 58473, 58849, 58867, 59924, 62865
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 0, 1, 4, 57, 555, 5492, 55078, 551443, 5512825, ... . Apparently, the asymptotic density of this sequence exists and equals 0.000551... . - Amiram Eldar, Jan 18 2023

Examples

			k = 844 is a term since 844 = 2^2*211, k+1 = 845 = 5*13^2, k+2 = 846 = 2*3^2*47, and k+4 = 847 = 7*11^2.
		

Crossrefs

Subsequence of A067259, A071318 and A071319.

Programs

  • Mathematica
    With[{s = Select[Range[10^5], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)

Formula

A051903(k) = A051903(k+1) = A051903(k+2) = A051903(k+3) = 2 when k is a term.

A072072 Least number initiating a chain of n consecutive numbers each of which has maximal prime exponent exactly 3.

Original entry on oeis.org

8, 135, 6858, 2068373, 133799496, 80566783622, 30199064929748
Offset: 1

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Comments

a(7) <= 30199064929748 ("=" if there are no bugs in my program), a(8) > 300000000000000 (unless there's a bug in my program). - Brad Chalfan (bradc(AT)hevanet.com), Nov 13 2002

Examples

			m   = 2068373 = 17*17*17*421,
m+1 = 2068374 = 2*3*7*11*11*11,
m+2 = 2068375 = 5*5*5*37*16547,
m+3 = 2068376 = 2*2*2*47*5501.
		

Crossrefs

Extensions

One more term from Don Reble, Jun 17 2002
a(6) <= 80566783622 from Don Reble, equality established by Brad Chalfan (bradc(AT)hevanet.com), Nov 13 2002
30199064929748 confirmed to be the 7th term by Donovan Johnson, Jun 15 2009
Showing 1-6 of 6 results.