A071351 Numbers n such that both n^4 + 2 and n^4 - 2 are prime.
3, 21, 87, 99, 129, 141, 279, 627, 657, 777, 783, 795, 1653, 1725, 1833, 1959, 2001, 2043, 3039, 3399, 3609, 3861, 3975, 4257, 4371, 4491, 5403, 5541, 5709, 5985, 7371, 7539, 7869, 7917, 8397, 8445, 8547, 8793, 9051, 9057, 9915, 9933, 11067, 12153
Offset: 1
Examples
n=3: n^4 = 81; {79,83} are primes.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
lst={}; Do[p1=n^4-2; p2=n^4+2; If[PrimeQ[p1]&&PrimeQ[p2],AppendTo[lst,n]],{n,0,8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 17 2009 *) Select[Range[730000], AllTrue[#^4 + {2, -2}, PrimeQ] &] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 02 2018 *)