cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A071367 Numbers n such that n+0, n+1, n+2, n+3 and n+4 are, in some order, 1 * a prime, 2 * a prime, 3 * a prime, 4 * a prime and 5 * a prime.

Original entry on oeis.org

6, 211, 2305, 2731, 19441, 116131, 174595, 222931, 229945, 232051, 243091, 266401, 334315, 350785, 423481, 495265, 523945, 530545, 535915, 539401, 556705, 600601, 663601, 671035, 689131, 721891, 907195, 908041, 1105105, 1113961, 1289731
Offset: 1

Views

Author

Don Reble, May 21 2002

Keywords

Comments

A001221(a(n)) <= 2; A001222(a(n)) <= 3. - Reinhard Zumkeller, Aug 01 2015

Examples

			211 is a term because 211=1*211, 212=4*53, 213=3*71, 214=2*107 and 215=5*43. The left factors are the integers 1 to 5; and the right factors are primes.
6 is a term because 6=2*3, 7=1*7, 8=4*2, 9=3*3, 10=5*2 where the left factors are the integers 1 to 5 and the right factors are primes. - _Sean A. Irvine_, Jul 14 2024
		

Crossrefs

Programs

  • Haskell
    a071367 n = a071367_list !! (n-1)
    a071367_list = tail $ filter f [1..] where
       f x = and $ map g [5, 4 .. 1] where
         g k = sum (map h $ map (+ x) [0..4]) == 1 where
           h z = if r == 0 then a010051' z' else 0
                 where (z', r) = divMod z k
    -- Reinhard Zumkeller, Jul 31 2015

Extensions

Missing 6 inserted by Sean A. Irvine, Jul 14 2024

A071368 Numbers k such that k+0, k+1, k+2, k+3, k+4, and k+5 are, in some order, 1 * a prime, 2 * a prime, ... and 6 * a prime.

Original entry on oeis.org

18362, 2914913, 5516281, 6618242, 7224834, 9018353, 9339114, 10780554, 16831081, 17800553, 18164161, 18646202, 20239913, 29743561, 32464433, 32915513, 42464514, 43502033, 45652314, 51755761, 53464314, 62198634
Offset: 1

Views

Author

Don Reble, May 21 2002

Keywords

Comments

The terms ending in the digit "1" are primes congruent to 1 (mod 120), which form the sequence A208455: See there for a proof. - M. F. Hasler, Feb 27 2012
A001221(a(n)) <= A001222(a(n)) <= 3. - Reinhard Zumkeller, Jul 31 2015

Examples

			From _Reinhard Zumkeller_, Jul 31 2015: (Start)
18362 is in the sequence because 18362=2*9181, 18363=3*6121, 18364=4*4591, 18365=5*3673, 18366=6*3061 and 18367=1*18367. The left factors are the integers 1 to 6; and the right factors are primes.
5516281 is the smallest term also occurring in A071367:
5516281 + 0 = 1 * 5516281 = prime(381844) = a(3) = A071367(77);
5516281 + 1 = 2 * 2758141 = 2 * prime(200537);
5516281 + 2 = 3 * 1838761 = 3 * prime(137758);
5516281 + 3 = 4 * 1379071 = 4 * prime(105622);
5516281 + 4 = 5 * 1103257 = 5 * prime(85955);
5516281 + 5 = 6 * 919381 = 6 * prime(72692), not needed for A071367.
(End)
		

Crossrefs

Programs

  • Haskell
    a071368 n = a071368_list !! (n-1)
    a071368_list = filter f [1..] where
       f x = and $ map g [6, 5 .. 1] where
         g k = sum (map h $ map (+ x) [0..5]) == 1 where
           h z = if r == 0 then a010051' z' else 0
                 where (z', r) = divMod z k
    -- Reinhard Zumkeller, Jul 31 2015

A071369 Numbers n such that n+0, n+1, ... and n+6 are, in some order, 1 * a prime, 2 * a prime, ... and 7 * a prime.

Original entry on oeis.org

2914913, 5516281, 6618241, 9018353, 10780553, 18164161, 20239913, 45652313, 51755761, 62198633, 81235441, 91986833, 158764313, 175472641, 191010953, 197375753, 215206201, 322030801, 322461713, 362007353, 513284401, 668745001
Offset: 1

Views

Author

Don Reble, May 21 2002

Keywords

Examples

			2914913 is there because 2914913=1*2914913, 2914914=6*485819, 2914915=5*582983, 2914916=4*728729, 2914917=3*971639, 2914918=2*1457459 and 2914919=7*416417. The left factors are the integers 1 to 7; and the right factors are primes.
		

Crossrefs

A071370 Numbers n such that n+0, n+1, ... and n+7 are, in some order, 1 * a prime, 2 * a prime, ... and 8 * a prime.

Original entry on oeis.org

10780552, 62198632, 884811061, 1457032501, 3573315892, 7321991041, 7391371681, 8557865812, 11434075381, 16893247141, 21599190901, 22487905441, 28044279892, 28273111012, 37923188932, 50238568801, 59635316161
Offset: 1

Views

Author

Don Reble, May 21 2002

Keywords

Examples

			10780552 is there because 10780552=8*1347569, 10780553=7*1540079, 10780554=6*1796759, 10780555=5*2156111, 10780556=4*2695139, 10780557=3*3593519, 10780558=2*5390279 and 10780559=1*10780559. The left factors are the integers 1 to 8; and the right factors are primes.
		

Crossrefs

A071372 Numbers n such that n+0, n+1, ... and n+9 are, in some order, 1 * a prime, 2 * a prime, ... and 10 * a prime.

Original entry on oeis.org

1676641682, 1829413730, 862353305089, 2394196081201, 7816812203762, 9089234694530, 10689865119781, 10988437006262, 13826845745989, 17242727247890, 21487725800102, 24653435773682, 28779837186662
Offset: 1

Views

Author

Don Reble, May 21 2002

Keywords

Examples

			1676641682 is there because 1676641682=2*838320841, 1676641683=3*558880561, 1676641684=4*419160421, 1676641685=5*335328337, 1676641686=6*279440281, 1676641687=7*239520241, 1676641688=8*209580211, 1676641689=9*186293521, 1676641690=10*167664169 and 1676641691=1*1676641691. The left factors are the integers 1 to 10; and the right factors are primes.
		

Crossrefs

A138588 a(n) = the least integer > n such that r(1)|a(n), r(2)|(a(n)+1), r(3)|(a(n)+2),... and r(n)|(a(n)+n-1), where (r(1),r(2),r(3),...,r(n)) is some permutation of (1,2,3,...,n).

Original entry on oeis.org

2, 3, 4, 6, 6, 20, 24, 48, 48, 110, 110, 110, 243, 403, 402, 2504, 2352, 12219, 25200, 60458, 14256, 95760, 120120, 582090, 582096, 186120, 3299404, 11060250, 28648620, 376576202, 9469950, 832431604, 832431603, 962161203, 1403352722
Offset: 1

Views

Author

Leroy Quet, May 13 2008

Keywords

Comments

It is easy to see that every term of this sequence exists, because the stretch of n terms, n!-n to n!-1, is such that n|(n!-n), (n-1)|(n!-n+1),...,2|(n!-2), 1|(n!-1).

Examples

			Example, n = 7:
For all stretches of 7 consecutive integers, with the least integer m in each stretch such that m >=8 and m <= 19, there are at least 2 primes (each > 7) in the stretch. Now both primes cannot be divided by any positive integer <= 7 except 1. But there is only one 1 in the permutation (r(1),r(2),...,r(7)). So a(7) is > 19.
If the least integer in the stretch of 7 consecutive integers is 20, 21, or 22, then there is only one prime in the stretch, but there are two integers, 22 and 26, that aren't divisible by any integer <= 7 except 1 and 2. (And there is already a prime, 23, that needs to be divided by 1.)
So a(7) is > 22. If the least integer in the stretch of 7 consecutive integers is 23, then there are 2 primes in the stretch. But if the smallest integer of the stretch is 24, then we have 4|24, 5|25, 2|26, 3|27, 7|28, 1|29 and 6|30. And the sequence of 7 divisors (4,5,2,3,7,1,6) is a permutation of (1,2,3,4,5,6,7). So a(7) = 24.
		

Crossrefs

Extensions

More terms from Don Reble, May 15 2008

A071371 Numbers n such that n+0, n+1, ... and n+8 are, in some order, 1 * a prime, 2 * a prime, ... and 9 * a prime.

Original entry on oeis.org

1829413731, 13096880161, 28273111011, 32480018341, 79089694311, 330780346261, 363500177041, 602794125781, 679251409201, 905780175301, 956731265701, 1010903523841, 1011470714101, 1086338816631, 1312670706051
Offset: 1

Views

Author

Don Reble, May 21 2002

Keywords

Examples

			1829413731 is there because 1829413731=3*609804577, 1829413732=4*457353433, 1829413733=7*261344819, 1829413734=6*304902289, 1829413735=5*365882747, 1829413736=8*228676717, 1829413737=9*203268193, 1829413738=2*914706869 and 1829413739=1*1829413739. The left factors are the integers 1 to 9; and the right factors are primes.
		

Crossrefs

Showing 1-7 of 7 results.