A071396 Rounded total surface area of a regular octahedron with edge length n.
0, 3, 14, 31, 55, 87, 125, 170, 222, 281, 346, 419, 499, 585, 679, 779, 887, 1001, 1122, 1251, 1386, 1528, 1677, 1833, 1995, 2165, 2342, 2525, 2716, 2913, 3118, 3329, 3547, 3772, 4005, 4244, 4489, 4742, 5002, 5269, 5543, 5823, 6111, 6405, 6707, 7015, 7330
Offset: 0
Examples
a(3)=31 because round(2*3^2*sqrt(3)) = round(18*1.73205...) = round(31.1769...) = 31.
References
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Octahedron
- Eric Weisstein's World of Mathematics, Platonic Solid
Crossrefs
Programs
-
Magma
[Round(2*n^2 * Sqrt(3)): n in [0..50]]; // Vincenzo Librandi, May 21 2011
-
Mathematica
Table[Round[2n^2 Sqrt[3]],{n,0,50}] (* Harvey P. Dale, Feb 19 2024 *)
-
PARI
for(n=0,100,print1(round(2*n^2*sqrt(3)),","))
-
Python
from math import isqrt def A071396(n): return (m:=isqrt(k:=3*n**4<<2))+int(k>m*(m+1)) # Chai Wah Wu, Jun 05 2025
Formula
a(n) = round(2 * n^2 * sqrt(3)).