cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071396 Rounded total surface area of a regular octahedron with edge length n.

Original entry on oeis.org

0, 3, 14, 31, 55, 87, 125, 170, 222, 281, 346, 419, 499, 585, 679, 779, 887, 1001, 1122, 1251, 1386, 1528, 1677, 1833, 1995, 2165, 2342, 2525, 2716, 2913, 3118, 3329, 3547, 3772, 4005, 4244, 4489, 4742, 5002, 5269, 5543, 5823, 6111, 6405, 6707, 7015, 7330
Offset: 0

Views

Author

Rick L. Shepherd, May 23 2002

Keywords

Examples

			a(3)=31 because round(2*3^2*sqrt(3)) = round(18*1.73205...) = round(31.1769...) = 31.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A070169 (tetrahedron), A033581 (cube), A071397 (dodecahedron), A071398 (icosahedron), A071400 (volume of octahedron).

Programs

  • Magma
    [Round(2*n^2 * Sqrt(3)): n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Mathematica
    Table[Round[2n^2 Sqrt[3]],{n,0,50}] (* Harvey P. Dale, Feb 19 2024 *)
  • PARI
    for(n=0,100,print1(round(2*n^2*sqrt(3)),","))
    
  • Python
    from math import isqrt
    def A071396(n): return (m:=isqrt(k:=3*n**4<<2))+int(k>m*(m+1)) # Chai Wah Wu, Jun 05 2025

Formula

a(n) = round(2 * n^2 * sqrt(3)).