cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071397 Rounded total surface area of a regular dodecahedron with edge length n.

Original entry on oeis.org

0, 21, 83, 186, 330, 516, 743, 1012, 1321, 1672, 2065, 2498, 2973, 3489, 4047, 4645, 5285, 5967, 6689, 7453, 8258, 9105, 9993, 10922, 11892, 12904, 13957, 15051, 16186, 17363, 18581, 19841, 21141, 22483, 23866, 25291, 26757, 28264, 29812
Offset: 0

Views

Author

Rick L. Shepherd, May 28 2002

Keywords

Examples

			a(4)=330 because round(3*4^2*sqrt(25 + 10*sqrt(5))) = round(48*6.88190...) = round(330.331...) = 330.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A070169 (tetrahedron), A033581 (cube), A071396 (octahedron), A071398 (icosahedron), A071401 (volume of dodecahedron).

Programs

  • Magma
    [Round(3 * n^2 * Sqrt(25+10*Sqrt(5))): n in [0..50]]; // Vincenzo Librandi, May 21 2011
  • Mathematica
    With[{c=3*Sqrt[25+10*Sqrt[5]]},Round[c*Range[0,40]^2]] (* Harvey P. Dale, Jul 06 2018 *)
  • PARI
    for(n=0,100,print1(round(3*n^2*sqrt(25+10*sqrt(5))),","))
    

Formula

a(n) = round(3 * n^2 * sqrt(25 + 10*sqrt(5))).