A071397 Rounded total surface area of a regular dodecahedron with edge length n.
0, 21, 83, 186, 330, 516, 743, 1012, 1321, 1672, 2065, 2498, 2973, 3489, 4047, 4645, 5285, 5967, 6689, 7453, 8258, 9105, 9993, 10922, 11892, 12904, 13957, 15051, 16186, 17363, 18581, 19841, 21141, 22483, 23866, 25291, 26757, 28264, 29812
Offset: 0
Examples
a(4)=330 because round(3*4^2*sqrt(25 + 10*sqrt(5))) = round(48*6.88190...) = round(330.331...) = 330.
References
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Dodecahedron
- Eric Weisstein's World of Mathematics, Platonic Solid
Crossrefs
Programs
-
Magma
[Round(3 * n^2 * Sqrt(25+10*Sqrt(5))): n in [0..50]]; // Vincenzo Librandi, May 21 2011
-
Mathematica
With[{c=3*Sqrt[25+10*Sqrt[5]]},Round[c*Range[0,40]^2]] (* Harvey P. Dale, Jul 06 2018 *)
-
PARI
for(n=0,100,print1(round(3*n^2*sqrt(25+10*sqrt(5))),","))
Formula
a(n) = round(3 * n^2 * sqrt(25 + 10*sqrt(5))).