cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071398 Rounded total surface area of a regular icosahedron with edge length n.

Original entry on oeis.org

0, 9, 35, 78, 139, 217, 312, 424, 554, 701, 866, 1048, 1247, 1464, 1697, 1949, 2217, 2503, 2806, 3126, 3464, 3819, 4192, 4581, 4988, 5413, 5854, 6313, 6790, 7283, 7794, 8323, 8868, 9431, 10011, 10609, 11224, 11856, 12505, 13172, 13856, 14558, 15277
Offset: 0

Views

Author

Rick L. Shepherd, May 29 2002

Keywords

Examples

			a(4)=139 because round(5*4^2*sqrt(3)) = round(80*1.73205...) = round(138.56...) = 139.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A070169 (tetrahedron), A033581 (cube), A071396 (octahedron), A071397 (dodecahedron), A071402 (volume of icosahedron).

Programs

  • Magma
    [Round(5 * n^2 * Sqrt(3)): n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Mathematica
    With[{c=5Sqrt[3]},Round[c Range[0,50]^2]] (* Harvey P. Dale, May 20 2011 *)
  • PARI
    for(n=0,100,print1(round(5*n^2*sqrt(3)),","))
    
  • Python
    from math import isqrt
    def A071398(n): return (m:=isqrt(k:=75*n**4))+int(k>m*(m+1)) # Chai Wah Wu, Jun 05 2025

Formula

a(n) = round(5 * n^2 * sqrt(3)).