A071407 Least k such that k*prime(n) + 1 and k*prime(n) - 1 are twin primes.
2, 2, 6, 6, 18, 24, 6, 12, 6, 12, 42, 54, 30, 24, 6, 120, 18, 258, 24, 18, 84, 132, 54, 48, 114, 42, 6, 6, 48, 24, 144, 30, 6, 12, 12, 78, 24, 36, 30, 54, 132, 18, 90, 36, 66, 18, 42, 30, 120, 30, 36, 42, 18, 18, 54, 84, 60, 12, 210, 12, 6, 60, 150, 102, 6, 210, 30, 24, 6
Offset: 1
Examples
n=4: prime(4)=7, a(4)=6 because 6*prime(4)=42 and {41,43} are primes.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a071407 n = head [k | k <- [2,4..], let x = k * a000040 n, a010051' (x - 1) == 1, a010051' (x + 1) == 1] -- Reinhard Zumkeller, Feb 14 2013
-
Mathematica
Table[fl=1; Do[s=(Prime[j])*k; If[PrimeQ[s-1]&&PrimeQ[s+1]&&Equal[fl, 1], Print[{j, k}]; fl=0], {k, 1, 2*j^2}], {j, 0, 100}]
Formula
From Amiram Eldar, Aug 25 2025: (Start)
a(n) = A090530(n) / prime(n).
a(n) = 6 * A294731(n) for n >= 3. (End)
Comments