cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071561 Numbers with no middle divisors (cf. A071090).

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 111, 113, 114
Offset: 1

Views

Author

Robert G. Wilson v, May 30 2002

Keywords

Comments

Numbers k such that A071090(k) is 0.
Conjecture: lim_{n->oo} a(n)/n = 4/3.
Regarding the above conjecture, numerical calculations suggest that this limit is smaller than 4/3. See A071540. - Amiram Eldar, Jul 27 2024
Also numbers n with the property that the number of parts in the symmetric representation of sigma(n) is even. - Michel Marcus and Omar E. Pol, Apr 25 2014 [For a proof see the link. - Hartmut F. W. Hoft, Sep 09 2015]
Middle divisors are divisors d with sqrt(k/2) <= d < sqrt(2k). - Michael B. Porter, Oct 19 2018

Examples

			From _Michael B. Porter_, Oct 19 2018: (Start)
The divisors of 21 are 1, 3, 7, and 21.  Since none of these are between sqrt(21/2) = 3.24... and sqrt(2*21) = 6.48..., 21 is in the sequence.
The divisors of 20 are 1, 2, 4, 5, 10, and 20.  Since 4 and 5 are both between sqrt(20/2) = 3.16... and sqrt(2*20) = 6.32..., 20 is not in the sequence. (End)
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Select[ Divisors[n], Sqrt[n/2] <= # < Sqrt[n*2] &]; Select[ Range[125], f[ # ] == 0 &]
    (* Related to the symmetric representation of sigma *)
    (* subsequence of even parts of number k for m <= k <= n *)
    (* Function a237270[] is defined in A237270 *)
    (* Using Wilson's Mathematica program (see above) I verified the equality of both for numbers k <= 10000 *)
    a071561[m_, n_]:=Select[Range[m, n], EvenQ[Length[a237270[#]]]&]
    a071561[1, 114] (* data *)
    (* Hartmut F. W. Hoft, Jul 07 2014 *)
    Select[Range@ 120, Function[n, Select[Divisors@ n, Sqrt[n/2] <= # < Sqrt[2 n] &] == {}]] (* Michael De Vlieger, Jan 03 2017 *)
  • PARI
    is(n) = fordiv(n, d, if(sqrt(n/2) <= d && d < sqrt(2*n), return(0))); 1 \\ Iain Fox, Dec 19 2017
    
  • PARI
    is(n,f=factor(n))=my(t=(n+1)\2); fordiv(f,d, if(d^2>=t, return(d^2>2*n))); 0 \\ Charles R Greathouse IV, Jan 22 2018
    
  • PARI
    list(lim)=my(v=List(),t); forfactored(n=3,lim\1, t=(n[1]+1)\2; fordiv(n[2],d, if(d^2>=t, if(d^2>2*n[1], listput(v,n[1])); break))); Vec(v) \\ Charles R Greathouse IV, Jan 22 2018