cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071618 a(n+1) - 3*a(n) + a(n-1) = (2/3)(1+w^(n+1)+w^(2n+2)), where w = exp(2 Pi I / 3).

Original entry on oeis.org

0, 1, 3, 8, 23, 61, 160, 421, 1103, 2888, 7563, 19801, 51840, 135721, 355323, 930248, 2435423, 6376021, 16692640, 43701901, 114413063, 299537288, 784198803, 2053059121, 5374978560, 14071876561, 36840651123, 96450076808, 252509579303
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2002

Keywords

Comments

The sequence is closely related to the third term in the continued fraction expansion of 2(F(4n)+F(2n))/phi where F is the Fibonacci sequence. For any k smaller than a(n), k*F(2n)*phi has to be rounded by excess, for any k greater than a(n), k*F(2n)*phi has to be rounded by default. - Thomas Baruchel, Aug 31 2004

Programs

  • Mathematica
    a[ -1 ] = 0; a[ 0 ] = 1; w = Exp[ 2Pi*I/3 ]; a[ n_ ] := a[ n ] = Simplify[ (2/3)(1 + w^n + w^(2n)) + 3a[ n - 1 ] - a[ n - 2 ] ]; Table[ a[ n ], {n, -1, 28} ]
    LinearRecurrence[{3,-1,1,-3,1},{0,1,3,8,23},30] (* or *) CoefficientList[ Series[x (1+x^3)/((1-x^3)*(1-3x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Dec 18 2011 *)
  • PARI
    u=0;v=1;for(n=1,30,print1(a=3*v-u+2*!(n%3)," ");u=v;v=a) /* Thomas Baruchel */
    
  • PARI
    {a(n)= ( fibonacci(2*n+1)+ fibonacci(2*n-1)+ (n%3>0))/2- 1 } /* Michael Somos, Mar 08 2007 */
    
  • PARI
    {a(n)= n=abs(n); polcoeff( x*(1+x^3)/ ((1-x^3)* (1-3*x+x^2)) +x*O(x^n), n)} /* Michael Somos, Mar 08 2007 */

Formula

a(n) = floor ( phi^2n / 2 ) = floor ( (Lucas(2n)-1) / 2 ). - Thomas Baruchel, Aug 31 2004
a(-n) = a(n). a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) + 2. - Michael Somos, Mar 08 2007
G.f.: x*(1+x^3) / ((1-x^3)* (1-3*x+x^2)). - Michael Somos, Mar 08 2007
a(0)=0, a(1)=1, a(2)=3, a(3)=8, a(4)=23, a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 3*a(n-4) + a(n-5). - Harvey P. Dale, Dec 18 2011