A071675 Array read by antidiagonals of trinomial coefficients.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 3, 3, 1, 0, 0, 2, 6, 4, 1, 0, 0, 1, 7, 10, 5, 1, 0, 0, 0, 6, 16, 15, 6, 1, 0, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 0, 1, 30, 141, 266, 266
Offset: 0
Examples
Rows start 1, 0, 0, 0, 0, 0, ...; 1, 1, 1, 0, 0, 0, 0, ...; 1, 2, 3, 2, 1, 0, 0, ...; 1, 3, 6, 7, 6, 3, 1, 0, ...; 1, 4, 10, 16, 19, 16, 10, 4, 1, ...; etc.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[n - k - j, j]*Binomial[k, n - k - j], {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
Formula
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) starting with T(0, 0)=1. See A027907 for more.
As a number triangle, T(n, k) = Sum_{i=0..floor((n-k)/2)} C(n-k-i, i) * C(k, n-k-i). - Paul Barry, Apr 26 2005
Comments