cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071723 Expansion of (1+x^2*C^2)*C^4, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 4, 15, 54, 192, 682, 2431, 8710, 31382, 113696, 414086, 1515516, 5571750, 20569590, 76228095, 283481670, 1057628550, 3957577800, 14849601090, 55859886420, 210622646520, 795898303668, 3013646759910, 11432740177564, 43448822603452, 165396657221152
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Crossrefs

gf=(1+x^2*C^2)*C^m: A000782 (m=1), A071721 (m=2), A071722 (m=3), this sequence (m=4).
Cf. A000108.

Programs

  • Maple
    a := n -> (2*(2*n + 1)*(11*n^2 + 17*n + 12)*binomial(2*n, n))/((n + 1)*(n + 2)*(n + 3)*(n + 4)): seq(a(n), n = 0..25); # Peter Luschny, Dec 01 2024
  • Maxima
    a(n):=sum((k+1)*(k^2+k+1)*binomial(2*n-k,n),k,0,n)/(n+1); /* Vladimir Kruchinin, Sep 28 2011 */
    
  • Maxima
    a(n):=(4*binomial(2*n+3,n)+6*binomial(2*n+1,n+3))/(n+4); /* Tani Akinari, Dec 01 2024 */

Formula

a(n) = (Sum_{k=0..n} (k+1)*(k^2+k+1)*binomial(2*n-k,n))/(n+1). - Vladimir Kruchinin, Sep 28 2011
a(n) = (4*binomial(2*n+3,n)+6*binomial(2*n+1,n+3))/(n+4). - Tani Akinari, Dec 01 2024
D-finite with recurrence 2*(n+4)*a(n) +2*(-7*n-16)*a(n-1) +3*(9*n+4)*a(n-2) +6*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jul 13 2025