A071723 Expansion of (1+x^2*C^2)*C^4, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
1, 4, 15, 54, 192, 682, 2431, 8710, 31382, 113696, 414086, 1515516, 5571750, 20569590, 76228095, 283481670, 1057628550, 3957577800, 14849601090, 55859886420, 210622646520, 795898303668, 3013646759910, 11432740177564, 43448822603452, 165396657221152
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a := n -> (2*(2*n + 1)*(11*n^2 + 17*n + 12)*binomial(2*n, n))/((n + 1)*(n + 2)*(n + 3)*(n + 4)): seq(a(n), n = 0..25); # Peter Luschny, Dec 01 2024
-
Maxima
a(n):=sum((k+1)*(k^2+k+1)*binomial(2*n-k,n),k,0,n)/(n+1); /* Vladimir Kruchinin, Sep 28 2011 */
-
Maxima
a(n):=(4*binomial(2*n+3,n)+6*binomial(2*n+1,n+3))/(n+4); /* Tani Akinari, Dec 01 2024 */
Formula
a(n) = (Sum_{k=0..n} (k+1)*(k^2+k+1)*binomial(2*n-k,n))/(n+1). - Vladimir Kruchinin, Sep 28 2011
a(n) = (4*binomial(2*n+3,n)+6*binomial(2*n+1,n+3))/(n+4). - Tani Akinari, Dec 01 2024
D-finite with recurrence 2*(n+4)*a(n) +2*(-7*n-16)*a(n-1) +3*(9*n+4)*a(n-2) +6*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jul 13 2025