cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071736 Expansion of (1+x^3*C^3)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 3, 9, 29, 96, 324, 1111, 3861, 13572, 48178, 172482, 622098, 2258416, 8246190, 30264435, 111585765, 413126460, 1535267250, 5724840990, 21413721510, 80326153440, 302105210160, 1138957917318, 4303550907234, 16294686579016
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

a(n) = number of Dyck (n+3)-paths whose initial ascent has length divisible by 3. For example, UUUUDDUDDD has initial ascent of length 4 and a(1) counts UUUDUDDD, UUUDDUDD, UUUDDDUD. - David Callan, Jul 25 2005

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 ((1 - (1 - 4 x)^(1/2))/(2 x))^3) ((1 - (1 - 4 x)^(1/2))/(2 x))^3, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • Maxima
    a(n):=if n=0 then 1 else 3*binomial(2*n,n)*(5*n^2+3*n+4)/((n+1)*(n+2)*(n+3)); /* Tani Akinari, Aug 03 2025 */

Formula

a(n) ~ 15*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
a(n) = 3*binomial(2*n,n)*(5*n^2+3*n+4)/((n+1)*(n+2)*(n+3)) for n>0. - Tani Akinari, Aug 03 2025