cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071773 a(n) = gcd(rad(n), n/rad(n)), where rad(n) = A007947(n) is the squarefree kernel of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3, 10, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 24 2002

Keywords

Comments

n is squarefree iff a(n)=1.
Product of primes dividing n more than once. - Charles R Greathouse IV, Aug 08 2013
Squarefree kernel of the square part of n. - Peter Munn, Jun 12 2020

Crossrefs

Cf. A003415, A003557, A005117, A007947, A007948, A008833, A057521, A166486 (parity of terms), A359433 (Dirichlet inverse).
Cf. A065464.

Programs

Formula

a(n) = gcd(A007947(n), A003557(n)).
Multiplicative with p^e -> p^ceiling((e-1)/e), p prime.
a(n) = rad(n/rad(n)) = A007947(A003557(n)). - Velin Yanev, Antti Karttunen, Aug 20 2017, Nov 28 2017
a(n) = A007947(A057521(n)). - Antti Karttunen, Nov 28 2017
a(n) = A007947(A008833(n)). - Peter Munn, Jun 12 2020
a(n) = gcd(A003415(n), A007947(n)). - Antti Karttunen, Jan 02 2023
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(2*s)). - Amiram Eldar, Nov 09 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(4*s-1) - 1/p^(4*s-2)).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A065464 = Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.428249505677094440218765707581823546121298513355936144031901379532123...
f'(1) = f(1) * Sum_{p prime} 2*(3*p-2)*log(p) / (p^3-2*p+1) = f(1) * 2.939073481649229666406787986900328729326669597518287791424059647447664...
and gamma is the Euler-Mascheroni constant A001620. (End)