A071814 Numbers k such that the number of 1's in the binary representation of k equals bigomega(k), the number of prime divisors of k (counted with multiplicity).
2, 6, 9, 10, 28, 33, 34, 42, 44, 50, 52, 54, 60, 65, 70, 76, 90, 98, 129, 135, 138, 148, 150, 156, 164, 184, 198, 204, 210, 225, 228, 232, 261, 266, 268, 273, 290, 292, 294, 297, 306, 308, 322, 330, 340, 344, 385, 388, 390, 405, 424, 440, 468, 486, 496, 504
Offset: 1
Examples
232 is a term because 232 = 11101000_2 and 232 = 2^3*29.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fQ[n_] := Count[IntegerDigits[n, 2], 1] == Plus @@ Last /@ FactorInteger@n; Select[ Range@517, fQ[ # ] &] (* Robert G. Wilson v, Jan 18 2006 *) Select[Range[600],Count[IntegerDigits[#,2],1]==PrimeOmega[#]&] (* Harvey P. Dale, Mar 07 2019 *)
Comments