A071869 Numbers k such that gpf(k) < gpf(k+1) < gpf(k+2) where gpf(k) denotes the largest prime factor of k.
8, 9, 20, 21, 24, 27, 32, 45, 56, 57, 77, 81, 84, 90, 91, 92, 105, 114, 120, 125, 132, 135, 140, 144, 147, 165, 168, 169, 170, 171, 175, 176, 177, 189, 200, 204, 212, 216, 220, 221, 225, 231, 234, 235, 247, 252, 260, 261, 275, 288, 289, 300, 315, 324, 345, 354
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Paul Erdős and Carl Pomerance, On the largest prime factors of n and n+1, Aequationes Math. 17 (1978), pp. 311-321.
Programs
-
Mathematica
gpf[n_] := FactorInteger[n][[-1, 1]]; ind = Position[Differences[Array[gpf, 350, 2]], ?(# > 0 &)] // Flatten; ind[[Position[Differences[ind], 1] // Flatten]] + 1 (* _Amiram Eldar, Jun 05 2022 *)
-
PARI
for(n=2,500,if(sign(component(component(factor(n),1),omega(n))-component(component(factor(n+1),1),omega(n+1)))+sign(component(component(factor(n+1),1),omega(n+1))-component(component(factor(n+2),1),omega(n+2)))==-2,print1(n,",")))
-
Python
from sympy import factorint A071869_list, p, q, r = [], 1, 2, 3 for n in range(2,10**4): p, q, r = q, r, max(factorint(n+2)) if p < q < r: A071869_list.append(n) # Chai Wah Wu, Jul 24 2017
Comments