cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071879 G.f. satisfies: A(x) = 1 + x*A(x) + x^3*A(x)^3.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 24, 57, 141, 349, 871, 2212, 5688, 14730, 38403, 100829, 266333, 706997, 1885165, 5047522, 13565203, 36578497, 98934826, 268342933, 729709432, 1989021256, 5433518806, 14873285506, 40790118487, 112064912455, 308390452661, 849969894794, 2346045295997
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2002

Keywords

Comments

Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 3. - Emeric Deutsch, Nov 03 2002. [Comment corrected by Christian G. Bower, Sep 25 2007]
Sequence is a Motzkin-like sequence. The Motzkin sequence A001006 counts ordered trees with n edges and having nodes of outdegree 0, 1, or 2 [g.f. f(x) defined by f = 1+x*f+(x*f)^2]. - Emeric Deutsch, Sep 30 2007
G.f. (offset 1) is series reversion of x^2/(x+x^2+x^4).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 24*x^6 + ...
The first-order differences of the terms form the coefficients of A(x)^3:
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 33*x^4 + 84*x^5 + 208*x^6 + 522*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n+1,1+2*i)*binomial(n-2*i,i), i=0..floor(n/3))/(n+1): seq(a(n), n=0..29);
  • Mathematica
    a[n_] := Sum[Binomial[n+1, 1+2i]*Binomial[n-2i, i], {i, 0, Floor[n/3]}]/(n+1);
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x^2/(x+x^2+x^4+x^2*O(x^n))),n+1))
    
  • PARI
    Vec(serreverse(x/(1+x+x^3)+O(x^66))/x) /* Joerg Arndt, Aug 19 2012 */
    
  • PARI
    {a(n)=local(A=1); for(i=1,n,A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(x*A)^(2*k)) +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 05 2014

Formula

a(n) = (Sum_{i=0..floor(n/3)} C(n+1, 1+2i)*C(n-2i, i))/(n+1). - Emeric Deutsch, Nov 03 2002
a(n) = Sum_{k=0..floor(n/3)} C(n,3k)*C(3k,k)/(2k+1). - Paul Barry, Sep 07 2006
D-finite with recurrence: 2*n*(2*n+3)*a(n) + 2*(1-6*n^2)*a(n-1) + 6*(2*n-1)*(n-1)*a(n-2) - 31*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 13 2012
a(n) ~ (2+3*2^(1/3))^(3/2) * (1+3*2^(-2/3))^n/(4*sqrt(6*Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 19 2013
G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k) * (x*A(x))^(2*k). - Paul D. Hanna, Sep 05 2014

Extensions

Name changed by Paul D. Hanna, Nov 15 2012