cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A116411 Coefficient of x^n in the expansion of (1+x+x^3)^n.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 76, 211, 589, 1597, 4351, 12046, 33496, 93094, 259351, 725089, 2031709, 5701189, 16023181, 45104044, 127134283, 358764613, 1013494318, 2865933907, 8111573416, 22977551656, 65138143006, 184789086106, 524571000799, 1490044262503, 4234901256781, 12042611698876, 34262320521661, 97525522430989
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Binomial transform of central coefficient of (1+x^3)^n.
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,3). [Joerg Arndt, Jul 05 2011]
a(n) also gives the number of lattice paths from (0,0) to (n,2*n) using steps (1,0), (1,2) and (1,3) since if a*(1,0) + b*(1,1) + c*(1,3) denotes a path from (0,0) to (n,n) then c*(1,0) + b*(1,2) + a*(1,3) is a path from (0,0) to (n,2*n) and vice versa. - Peter Bala, Jul 20 2014

Crossrefs

Cf. A071879.

Programs

  • Maple
    series(RootOf( (31*x^3-12*x^2+12*x-4)*A^3+(3-3*x)*A+1, A),x=0,30); # Mark van Hoeij, Apr 16 2013
  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[(1+x+x^3)^n],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 11 2015 *)
    Table[HypergeometricPFQ[{1/3-n/3,2/3-n/3,-n/3},{1/2,1},-27/4],{n,0,20}] (* Benedict W. J. Irwin, Nov 01 2016 *)
  • PARI
    a(n)=polcoeff((1+x+x^3)^n,n); /* Joerg Arndt, Jul 01 2011 */

Formula

a(n) = Sum_{k=0..floor(n/3)} C(n, 3*k)*C(3*k, k).
a(n) = Sum_{k=0..n} C(n, k)*C(k, k/3)*(cos(2*Pi*k/3)+1/2)*2/3.
G.f.: A(x) satisfies (31*x^3-12*x^2+12*x-4)*A(x)^3+(3-3*x)*A(x)+1 = 0. - Mark van Hoeij, Apr 16 2013
From Peter Bala, Jul 20 2014: (Start)
a(n) = coefficient of x^(2*n) in the expansion of (1 + x^2 + x^3)^n.
O.g.f.: sum {n >= 0} binomial(3*n,n)*x^(3*n)/(1 - x)^(3*n + 1).
By the Lagrange inversion formula, the o.g.f. equals the logarithmic derivative of the o.g.f. of A071879.
E.g.f.: exp(x)*sum {n >= 0} x^(3*n)/((2*n)!*n!). (End)
Recurrence: 2*n*(2*n-3)*a(n) = 2*(6*n^2 - 12*n + 5)*a(n-1) - 6*(n-1)*(2*n-3)*a(n-2) + 31*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Feb 11 2015
a(n) ~ (3 + 2^(2/3))^(n+1/2) / (2^(2*n/3 + 1) * sqrt(3*Pi*n)). - Vaclav Kotesovec, Feb 11 2015
a(n) = 3F2[1/3-n/3,2/3-n/3,-n/3; 1/2,1; -27/4]. - Benedict W. J. Irwin, Nov 01 2016

A364522 G.f. satisfies A(x) = 1 + x*A(x) + x^5*A(x)^5.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 258, 518, 1123, 2718, 7008, 18054, 44969, 108189, 255919, 609179, 1482210, 3689155, 9294440, 23419705, 58639835, 145948111, 362721386, 904673836, 2270287636, 5729191861, 14502873988, 36735974548, 93001413353, 235372519273
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2023

Keywords

Comments

Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 5. - Emanuele Munarini, Jul 11 2024

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n, 5*k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n,5*k) * binomial(5*k,k) / (4*k+1).

A364523 G.f. satisfies A(x) = 1 + x*A(x) + x^6*A(x)^6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 931, 1795, 3550, 7736, 18929, 49505, 130000, 330430, 804271, 1885675, 4327555, 9929515, 23224435, 55907251, 138016906, 345107296, 862546231, 2136402451, 5231163232, 12697101118, 30723857209, 74569942745
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2023

Keywords

Comments

Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 6. - Emanuele Munarini, Jul 11 2024

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n, 6*k)*binomial(6*k, k)/(5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k) * binomial(6*k,k) / (5*k+1).

A369483 Expansion of (1/x) * Series_Reversion( x / (1+x+x^3)^2 ).

Original entry on oeis.org

1, 2, 5, 16, 60, 242, 1014, 4370, 19278, 86678, 395751, 1829742, 8549100, 40302810, 191469165, 915751966, 4405727502, 21307102900, 103526683797, 505118705078, 2473833623696, 12157124607612, 59929746189165, 296271556144028, 1468494529164194, 7296261411708962
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^3)^2)/x)
    
  • PARI
    a(n, s=3, t=2, u=0) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(2*n-k+2,n-3*k).

A366051 Expansion of (1/x) * Series_Reversion( x/(1-x+x^3) ).

Original entry on oeis.org

1, -1, 1, 0, -3, 9, -16, 13, 29, -157, 391, -562, -32, 3002, -10373, 20747, -18083, -47941, 271117, -712216, 1066699, 122131, -6464446, 22907125, -46951992, 40883304, 120187926, -679375906, 1809757015, -2731745887, -468147579, 17768126376, -63256877763
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^(n-k)*binomial(n+1, k)*binomial(n-k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^(n-k) * binomial(n+1,k) * binomial(n-k+1,n-3*k).

A367113 G.f. satisfies A(x) = 1 + 2*x*A(x) + 2*x^3*A(x)^3.

Original entry on oeis.org

1, 2, 4, 10, 32, 112, 396, 1416, 5184, 19424, 73984, 285056, 1108848, 4350816, 17203008, 68473504, 274122752, 1103014912, 4458611968, 18096793088, 73724852224, 301360575488, 1235633545216, 5080554352640, 20943623880448, 86541514460672, 358386391051264
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 2^(n-2*k)*binomial(n, 3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} 2^(n-2*k) * binomial(n,3*k) * A001764(k).

A364552 G.f. satisfies A(x) = 1 + x*A(x) + x^4*A(x)^3.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 39, 78, 169, 373, 808, 1727, 3719, 8153, 18100, 40315, 89770, 200250, 448755, 1010685, 2284295, 5173961, 11740697, 26699780, 60863291, 139045991, 318247190, 729572315, 1675085099, 3851795549, 8869990949, 20453679944, 47223844863
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-k, 3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-k,3*k) * binomial(3*k,k) / (2*k+1).

A365732 G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^5*A(x)^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 88, 142, 250, 473, 917, 1751, 3240, 5829, 10350, 18472, 33574, 62293, 117138, 220932, 414777, 773282, 1434776, 2661302, 4955167, 9279325, 17466103, 32971057, 62274094, 117521503, 221572762, 417699772, 788205724, 1489975777
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n-5*k, k)*binomial(n-3*k+1, n-5*k)/(n-3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(n-5*k,k) * binomial(n-3*k+1,n-5*k) / (n-3*k+1) = Sum_{k=0..floor(n/6)} binomial(n-3*k,3*k) * binomial(3*k,k) / (2*k+1).

A367111 G.f. satisfies A(x) = 1 + x*A(x) + 2*x^3*A(x)^3.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 53, 155, 449, 1273, 3721, 11155, 33529, 101245, 309037, 950587, 2936833, 9117169, 28448209, 89134435, 280252585, 884123429, 2797933733, 8879167067, 28249550913, 90091462761, 287946752601, 922194331891, 2959055180953, 9511538457229
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 2^k*binomial(n, 3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} 2^k * binomial(n,3*k) * A001764(k).

A367112 G.f. satisfies A(x) = 1 + 2*x*A(x) + x^3*A(x)^3.

Original entry on oeis.org

1, 2, 4, 9, 24, 72, 227, 730, 2384, 7916, 26704, 91280, 315319, 1098710, 3856948, 13628441, 48435808, 173030048, 620965396, 2237681720, 8093572960, 29372735368, 106925552672, 390336084256, 1428620011263, 5241166583502, 19270575881964
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 2^(n-3*k)*binomial(n, 3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} 2^(n-3*k) * binomial(n,3*k) * A001764(k).
Showing 1-10 of 20 results. Next