cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A071879 G.f. satisfies: A(x) = 1 + x*A(x) + x^3*A(x)^3.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 24, 57, 141, 349, 871, 2212, 5688, 14730, 38403, 100829, 266333, 706997, 1885165, 5047522, 13565203, 36578497, 98934826, 268342933, 729709432, 1989021256, 5433518806, 14873285506, 40790118487, 112064912455, 308390452661, 849969894794, 2346045295997
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2002

Keywords

Comments

Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 3. - Emeric Deutsch, Nov 03 2002. [Comment corrected by Christian G. Bower, Sep 25 2007]
Sequence is a Motzkin-like sequence. The Motzkin sequence A001006 counts ordered trees with n edges and having nodes of outdegree 0, 1, or 2 [g.f. f(x) defined by f = 1+x*f+(x*f)^2]. - Emeric Deutsch, Sep 30 2007
G.f. (offset 1) is series reversion of x^2/(x+x^2+x^4).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 24*x^6 + ...
The first-order differences of the terms form the coefficients of A(x)^3:
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 33*x^4 + 84*x^5 + 208*x^6 + 522*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n+1,1+2*i)*binomial(n-2*i,i), i=0..floor(n/3))/(n+1): seq(a(n), n=0..29);
  • Mathematica
    a[n_] := Sum[Binomial[n+1, 1+2i]*Binomial[n-2i, i], {i, 0, Floor[n/3]}]/(n+1);
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x^2/(x+x^2+x^4+x^2*O(x^n))),n+1))
    
  • PARI
    Vec(serreverse(x/(1+x+x^3)+O(x^66))/x) /* Joerg Arndt, Aug 19 2012 */
    
  • PARI
    {a(n)=local(A=1); for(i=1,n,A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(x*A)^(2*k)) +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 05 2014

Formula

a(n) = (Sum_{i=0..floor(n/3)} C(n+1, 1+2i)*C(n-2i, i))/(n+1). - Emeric Deutsch, Nov 03 2002
a(n) = Sum_{k=0..floor(n/3)} C(n,3k)*C(3k,k)/(2k+1). - Paul Barry, Sep 07 2006
D-finite with recurrence: 2*n*(2*n+3)*a(n) + 2*(1-6*n^2)*a(n-1) + 6*(2*n-1)*(n-1)*a(n-2) - 31*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 13 2012
a(n) ~ (2+3*2^(1/3))^(3/2) * (1+3*2^(-2/3))^n/(4*sqrt(6*Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 19 2013
G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k) * (x*A(x))^(2*k). - Paul D. Hanna, Sep 05 2014

Extensions

Name changed by Paul D. Hanna, Nov 15 2012

A307905 Coefficient of x^n in (1 + n*x + x^3)^n.

Original entry on oeis.org

1, 1, 4, 30, 304, 3875, 59631, 1076383, 22309120, 522262245, 13631508400, 392535959156, 12362973152751, 422774554883590, 15600699362473876, 617888566413340503, 26145122799198386944, 1177107512023013681429, 56185125998674634494980, 2834081165961033246374350
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> coeff((1+n*x+x^3)^n,x,n):
    map(f, [$0..30]); # Robert Israel, Mar 27 2023
  • Mathematica
    Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^3)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+n*x+x^3)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n\3, n^(n-3*k)*binomial(n,3*k)*binomial(3*k,k))}

Formula

a(n) = Sum_{k=0..floor(n/3)} n^(n-3*k) * binomial(n,3*k) * binomial(3*k,k).
a(n) ~ c * n^n, where c = Sum_{k>=0} 1/(k!*(2*k)!) = HypergeometricPFQ[{}, {1/2, 1}, 1/4] = 1.52106585051363080966025715155941607334728986626976774617... - Vaclav Kotesovec, May 05 2019

A307903 Coefficient of x^n in (1 + n*x + n*x^3)^n.

Original entry on oeis.org

1, 1, 4, 36, 448, 6875, 124956, 2624293, 62537728, 1667191653, 49158400000, 1588285928306, 55796298391296, 2117279603738494, 86299754734693696, 3760031421065559375, 174374733095888748544, 8575617145497637681301, 445758339115421869936896, 24417549315693295193935516
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^2)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+n*x+n*x^3)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n\3, n^(n-2*k)*binomial(n,3*k)*binomial(3*k,k))}

Formula

a(n) = Sum_{k=0..floor(n/3)} n^(n-2*k) * binomial(n,3*k) * binomial(3*k,k).
a(n) ~ exp(3*n^(1/3)/2^(2/3)) * n^(n - 1/6) / (2^(2/3)*sqrt(3*Pi)) * (1 - 79/(36 * 2^(1/3) * n^(1/3))). - Vaclav Kotesovec, May 05 2019

A307904 Coefficient of x^n in (1 + x + n*x^3)^n.

Original entry on oeis.org

1, 1, 1, 10, 49, 151, 901, 5881, 28225, 165565, 1158601, 6993196, 44201521, 320103070, 2200745821, 15118248601, 113390231809, 845797019077, 6250243032145, 48718551529210, 384815404148401, 3021055319338813, 24492293678972725, 202303201125303565, 1669594463059152961
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27*n/4], {n, 0, 25}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+x+n*x^3)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n\3, n^k*binomial(n, 3*k)*binomial(3*k, k))}

Formula

a(n) = Sum_{k=0..floor(n/3)} n^k * binomial(n,3*k) * binomial(3*k,k).
log(a(n)) ~ (n/3 - 1/2)*log(n) + (log(3) - 2*log(2)/3)*n + (2*n)^(2/3)/3 - (2*n)^(1/3)/9. - Vaclav Kotesovec, May 05 2019

A378849 a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 48, 120, 309, 787, 2011, 5215, 13652, 35894, 94823, 251889, 672285, 1801185, 4842757, 13064059, 35349463, 95912989, 260896318, 711338596, 1943690464, 5321704006, 14597781706, 40112702176, 110404515703, 304338523999, 840140172621, 2322386563353
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 09 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$3, 3][n+1],
          (2*(8*n^3+3*n^2-25*n-6)*a(n-1)-2*(n-1)*(12*n^2-9*n-10)*
           a(n-2)+(43*n+13)*(n-1)*(n-2)*a(n-3)-31*(n-1)*(n-2)*
            (n-3)*a(n-4))/(2*(2*n+3)*(n+3)*(n-2)))
        end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Dec 09 2024
  • PARI
    a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+1, k)/(k+1)) \\ Thomas Scheuerle, Dec 09 2024

Formula

a(n) = hypergeom([4/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 3/2, 2], -27/4). - Peter Luschny, Dec 18 2024

Extensions

More terms from Alois P. Heinz, Dec 09 2024

A378850 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -2.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 73, 190, 505, 1316, 3431, 9065, 24122, 64325, 172082, 462344, 1246685, 3371135, 9140289, 24847422, 67708743, 184906614, 505986933, 1387240401, 3810083424, 10481797131, 28880894706, 79692785251, 220203155689, 609242057143, 1687666776031
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 09 2024

Keywords

Examples

			For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0).
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([4/3, 5/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 2/3, 5/2, 2], -27/4):
    seq(simplify(a(n)), n = 0..30);  # Peter Luschny, Dec 18 2024
  • PARI
    a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+3, k+1)/(2*k+3)) \\ Thomas Scheuerle, Dec 09 2024

A370183 Coefficient of x^n in the expansion of ( (1+x) * (1+x+x^3) )^n.

Original entry on oeis.org

1, 2, 6, 23, 98, 432, 1929, 8689, 39442, 180248, 828376, 3824757, 17727989, 82438852, 384429751, 1797017598, 8417950626, 39506701508, 185718513144, 874346516454, 4121841403488, 19454625634936, 91924347974883, 434783188981384, 2058320844378109, 9752580801216182
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(2*n-k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^3)) ). See A369481.

A370184 Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x+x^3) )^n.

Original entry on oeis.org

1, 3, 15, 87, 539, 3458, 22659, 150594, 1011131, 6841779, 46577430, 318654900, 2188931699, 15087882943, 104301302218, 722840860787, 5020500381131, 34937184351049, 243539967641271, 1700255814753027, 11886457488148674, 83200718154710607, 583026777685802256
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(3*n-k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^3)) ). See A369482.

A370287 Coefficient of x^n in the expansion of ( (1+x)^3 + x^3 )^n.

Original entry on oeis.org

1, 3, 15, 87, 531, 3333, 21309, 138015, 902547, 5946153, 39406005, 262404585, 1754316045, 11767931451, 79165530375, 533883963567, 3608242091091, 24432635451465, 165721028062605, 1125743155558677, 7657535953619721, 52151890274636463, 355576809975214095
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n, k)*binomial(3*n-3*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(3*n-3*k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^3 + x^3) ).

A379462 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -3.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 75, 204, 561, 1499, 4001, 10814, 29364, 79704, 216672, 590764, 1614421, 4419049, 12116139, 33277722, 91546143, 252209535, 695803659, 1922166420, 5316714156, 14723570406, 40820144106, 113293243636, 314759548879, 875342190283, 2436582442381
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 23 2024

Keywords

Examples

			For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0). An example of a path with these steps, but not staying on or above y = -3, is for n=6: DDUUUU.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(v=vector(nn+5), w); print1(v[4]=1); for(n=1, nn, w=v; for(i=1, n+3, w[i]+=v[i+2]; w[i+1]+=v[i]); v=w; print1(", ", v[4])); \\ Jinyuan Wang, Jan 07 2025

Formula

a(n) = Sum_{k=0..floor(n/3)} 2*binomial(n, k*3)*(binomial(3*k+3, k)/(k+2) - binomial(3*k, k-1)/(k+1)). - Thomas Scheuerle, Jan 07 2025
a(n) ~ 23 * (1 + 3/2^(2/3))^(n + 3/2) / (4 * sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2025

Extensions

More terms from Jinyuan Wang, Jan 07 2025
Showing 1-10 of 10 results.