A071879
G.f. satisfies: A(x) = 1 + x*A(x) + x^3*A(x)^3.
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 24, 57, 141, 349, 871, 2212, 5688, 14730, 38403, 100829, 266333, 706997, 1885165, 5047522, 13565203, 36578497, 98934826, 268342933, 729709432, 1989021256, 5433518806, 14873285506, 40790118487, 112064912455, 308390452661, 849969894794, 2346045295997
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 24*x^6 + ...
The first-order differences of the terms form the coefficients of A(x)^3:
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 33*x^4 + 84*x^5 + 208*x^6 + 522*x^7 + ...
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Olivier Bodini, Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski, The Ordered and Colored Products in Analytic Combinatorics: Application to the Quantitative Study of Synchronizations in Concurrent Processes. In 2017 Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO).
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
-
a:= n-> add(binomial(n+1,1+2*i)*binomial(n-2*i,i), i=0..floor(n/3))/(n+1): seq(a(n), n=0..29);
-
a[n_] := Sum[Binomial[n+1, 1+2i]*Binomial[n-2i, i], {i, 0, Floor[n/3]}]/(n+1);
-
a(n)=if(n<0,0,polcoeff(serreverse(x^2/(x+x^2+x^4+x^2*O(x^n))),n+1))
-
Vec(serreverse(x/(1+x+x^3)+O(x^66))/x) /* Joerg Arndt, Aug 19 2012 */
-
{a(n)=local(A=1); for(i=1,n,A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(x*A)^(2*k)) +x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 05 2014
A307905
Coefficient of x^n in (1 + n*x + x^3)^n.
Original entry on oeis.org
1, 1, 4, 30, 304, 3875, 59631, 1076383, 22309120, 522262245, 13631508400, 392535959156, 12362973152751, 422774554883590, 15600699362473876, 617888566413340503, 26145122799198386944, 1177107512023013681429, 56185125998674634494980, 2834081165961033246374350
Offset: 0
-
f:= n -> coeff((1+n*x+x^3)^n,x,n):
map(f, [$0..30]); # Robert Israel, Mar 27 2023
-
Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^3)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
-
{a(n) = polcoef((1+n*x+x^3)^n, n)}
-
{a(n) = sum(k=0, n\3, n^(n-3*k)*binomial(n,3*k)*binomial(3*k,k))}
A307903
Coefficient of x^n in (1 + n*x + n*x^3)^n.
Original entry on oeis.org
1, 1, 4, 36, 448, 6875, 124956, 2624293, 62537728, 1667191653, 49158400000, 1588285928306, 55796298391296, 2117279603738494, 86299754734693696, 3760031421065559375, 174374733095888748544, 8575617145497637681301, 445758339115421869936896, 24417549315693295193935516
Offset: 0
-
Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^2)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
-
{a(n) = polcoef((1+n*x+n*x^3)^n, n)}
-
{a(n) = sum(k=0, n\3, n^(n-2*k)*binomial(n,3*k)*binomial(3*k,k))}
A307904
Coefficient of x^n in (1 + x + n*x^3)^n.
Original entry on oeis.org
1, 1, 1, 10, 49, 151, 901, 5881, 28225, 165565, 1158601, 6993196, 44201521, 320103070, 2200745821, 15118248601, 113390231809, 845797019077, 6250243032145, 48718551529210, 384815404148401, 3021055319338813, 24492293678972725, 202303201125303565, 1669594463059152961
Offset: 0
-
Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27*n/4], {n, 0, 25}] (* Vaclav Kotesovec, May 05 2019 *)
-
{a(n) = polcoef((1+x+n*x^3)^n, n)}
-
{a(n) = sum(k=0, n\3, n^k*binomial(n, 3*k)*binomial(3*k, k))}
A378849
a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.
Original entry on oeis.org
1, 1, 1, 3, 9, 21, 48, 120, 309, 787, 2011, 5215, 13652, 35894, 94823, 251889, 672285, 1801185, 4842757, 13064059, 35349463, 95912989, 260896318, 711338596, 1943690464, 5321704006, 14597781706, 40112702176, 110404515703, 304338523999, 840140172621, 2322386563353
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, [1$3, 3][n+1],
(2*(8*n^3+3*n^2-25*n-6)*a(n-1)-2*(n-1)*(12*n^2-9*n-10)*
a(n-2)+(43*n+13)*(n-1)*(n-2)*a(n-3)-31*(n-1)*(n-2)*
(n-3)*a(n-4))/(2*(2*n+3)*(n+3)*(n-2)))
end:
seq(a(n), n=0..31); # Alois P. Heinz, Dec 09 2024
-
a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+1, k)/(k+1)) \\ Thomas Scheuerle, Dec 09 2024
A378850
a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -2.
Original entry on oeis.org
1, 1, 1, 4, 13, 31, 73, 190, 505, 1316, 3431, 9065, 24122, 64325, 172082, 462344, 1246685, 3371135, 9140289, 24847422, 67708743, 184906614, 505986933, 1387240401, 3810083424, 10481797131, 28880894706, 79692785251, 220203155689, 609242057143, 1687666776031
Offset: 0
For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0).
-
a := n -> hypergeom([4/3, 5/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 2/3, 5/2, 2], -27/4):
seq(simplify(a(n)), n = 0..30); # Peter Luschny, Dec 18 2024
-
a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+3, k+1)/(2*k+3)) \\ Thomas Scheuerle, Dec 09 2024
A370183
Coefficient of x^n in the expansion of ( (1+x) * (1+x+x^3) )^n.
Original entry on oeis.org
1, 2, 6, 23, 98, 432, 1929, 8689, 39442, 180248, 828376, 3824757, 17727989, 82438852, 384429751, 1797017598, 8417950626, 39506701508, 185718513144, 874346516454, 4121841403488, 19454625634936, 91924347974883, 434783188981384, 2058320844378109, 9752580801216182
Offset: 0
-
a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
A370184
Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x+x^3) )^n.
Original entry on oeis.org
1, 3, 15, 87, 539, 3458, 22659, 150594, 1011131, 6841779, 46577430, 318654900, 2188931699, 15087882943, 104301302218, 722840860787, 5020500381131, 34937184351049, 243539967641271, 1700255814753027, 11886457488148674, 83200718154710607, 583026777685802256
Offset: 0
-
a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
A370287
Coefficient of x^n in the expansion of ( (1+x)^3 + x^3 )^n.
Original entry on oeis.org
1, 3, 15, 87, 531, 3333, 21309, 138015, 902547, 5946153, 39406005, 262404585, 1754316045, 11767931451, 79165530375, 533883963567, 3608242091091, 24432635451465, 165721028062605, 1125743155558677, 7657535953619721, 52151890274636463, 355576809975214095
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n, k)*binomial(3*n-3*k, n-3*k));
A379462
a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -3.
Original entry on oeis.org
1, 1, 1, 4, 13, 31, 75, 204, 561, 1499, 4001, 10814, 29364, 79704, 216672, 590764, 1614421, 4419049, 12116139, 33277722, 91546143, 252209535, 695803659, 1922166420, 5316714156, 14723570406, 40820144106, 113293243636, 314759548879, 875342190283, 2436582442381
Offset: 0
For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0). An example of a path with these steps, but not staying on or above y = -3, is for n=6: DDUUUU.
-
lista(nn) = my(v=vector(nn+5), w); print1(v[4]=1); for(n=1, nn, w=v; for(i=1, n+3, w[i]+=v[i+2]; w[i+1]+=v[i]); v=w; print1(", ", v[4])); \\ Jinyuan Wang, Jan 07 2025
Showing 1-10 of 10 results.
Comments