A378849 a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.
1, 1, 1, 3, 9, 21, 48, 120, 309, 787, 2011, 5215, 13652, 35894, 94823, 251889, 672285, 1801185, 4842757, 13064059, 35349463, 95912989, 260896318, 711338596, 1943690464, 5321704006, 14597781706, 40112702176, 110404515703, 304338523999, 840140172621, 2322386563353
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1$3, 3][n+1], (2*(8*n^3+3*n^2-25*n-6)*a(n-1)-2*(n-1)*(12*n^2-9*n-10)* a(n-2)+(43*n+13)*(n-1)*(n-2)*a(n-3)-31*(n-1)*(n-2)* (n-3)*a(n-4))/(2*(2*n+3)*(n+3)*(n-2))) end: seq(a(n), n=0..31); # Alois P. Heinz, Dec 09 2024
-
PARI
a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+1, k)/(k+1)) \\ Thomas Scheuerle, Dec 09 2024
Formula
a(n) = hypergeom([4/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 3/2, 2], -27/4). - Peter Luschny, Dec 18 2024
Extensions
More terms from Alois P. Heinz, Dec 09 2024