cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Emely Hanna Li Lobnig

Emely Hanna Li Lobnig's wiki page.

Emely Hanna Li Lobnig has authored 5 sequences.

A379463 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -1.

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 31, 71, 150, 334, 826, 2146, 5498, 13690, 33762, 84306, 214451, 551107, 1417291, 3637627, 9343555, 24096675, 62439587, 162331747, 422773098, 1102422546, 2879207046, 7534606366, 19756893196, 51894005428, 136496647696, 359478351816, 947912008073
Offset: 0

Author

Emely Hanna Li Lobnig, Dec 23 2024

Keywords

Examples

			For n = 4, the a(4)=3 paths are HHHH, UUDU, UUUD, where U=(1,1), D=(1,-3) and H=(1,0).
		

Crossrefs

Programs

  • Maple
    A379463 := proc(n)
        add(2*binomial(n, k*4)*binomial(4*k+1, k)/(3*k+2),k=0..floor(n/4)) ;
    end proc:
    seq(A379463(n),n=0..50) ; # R. J. Mathar, Jan 29 2025
  • PARI
    a(n) = sum(k=0, floor(n/4), 2*binomial(n, k*4)*binomial(4*k+1, k)/(3*k+2)) \\ Thomas Scheuerle, Jan 07 2025

Formula

a(n) ~ 2^(3/2) * (1 + 4/3^(3/4))^(n + 3/2) / (3^(11/8) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2025
Conjecture D-finite with recurrence 3*n*(3*n+4)*(n-3)*(3*n+8)*a(n) +3*(-45*n^4+54*n^3+192*n^2-27*n-20)*a(n-1)
+9*(n-1)*(30*n^3-72*n^2-7*n+20)*a(n-2) -3*(n-1)*(n-2)*(90*n^2-234*n+95)*a(n-3) -(n-1)*(n-2)*(n-3)*(121*n+499)*a(n-4) +229*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 29 2025

Extensions

More terms from Jinyuan Wang, Jan 07 2025

A379462 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -3.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 75, 204, 561, 1499, 4001, 10814, 29364, 79704, 216672, 590764, 1614421, 4419049, 12116139, 33277722, 91546143, 252209535, 695803659, 1922166420, 5316714156, 14723570406, 40820144106, 113293243636, 314759548879, 875342190283, 2436582442381
Offset: 0

Author

Emely Hanna Li Lobnig, Dec 23 2024

Keywords

Examples

			For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0). An example of a path with these steps, but not staying on or above y = -3, is for n=6: DDUUUU.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(v=vector(nn+5), w); print1(v[4]=1); for(n=1, nn, w=v; for(i=1, n+3, w[i]+=v[i+2]; w[i+1]+=v[i]); v=w; print1(", ", v[4])); \\ Jinyuan Wang, Jan 07 2025

Formula

a(n) = Sum_{k=0..floor(n/3)} 2*binomial(n, k*3)*(binomial(3*k+3, k)/(k+2) - binomial(3*k, k-1)/(k+1)). - Thomas Scheuerle, Jan 07 2025
a(n) ~ 23 * (1 + 3/2^(2/3))^(n + 3/2) / (4 * sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2025

Extensions

More terms from Jinyuan Wang, Jan 07 2025

A379464 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -2.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 46, 106, 226, 514, 1306, 3466, 9002, 22634, 56330, 142026, 364743, 945303, 2448511, 6323695, 16336885, 42363693, 110340297, 288229377, 753920796, 1973799396, 5174280216, 13588243696, 35748326836, 94188788164, 248464963876, 656148369796
Offset: 0

Author

Emely Hanna Li Lobnig, Dec 23 2024

Keywords

Examples

			For n = 4, the a(4)=4 paths are HHHH, UDUU, UUDU, UUUD, where U=(1,1), D=(1,-3) and H=(1,0).
		

Crossrefs

Programs

  • Maple
    f:= proc(n,y) option remember;
        if n = 0 then if y = 0 then return 1 else return 0 fi fi;
        if y > n then return 0 fi;
        if y >= -1 then procname(n-1,y-1) + procname(n-1,y) + procname(n-1,y+3)
        else procname(n-1,y) + procname(n-1,y+3)
        fi;
    end proc:
    map(f, [$0..40],0); # Robert Israel, Jan 23 2025
  • PARI
    a(n) = sum(k=0, floor(n/4), 3*binomial(n, k*4)*binomial(4*k+3, k)/(4*k+3)) \\ Thomas Scheuerle, Jan 07 2025

Formula

a(n) ~ 2^(5/2) * (1 + 4/3^(3/4))^(n + 3/2) / (3^(11/8) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2025
Conjecture D-finite with recurrence +3*(n+4)*(3*n+4)*(3*n+8)*a(n) +3*(-63*n^3-297*n^2-349*n-60)*a(n-1) +3*(189*n^3+270*n^2-229*n-140)*a(n-2) +15*(-63*n^3+117*n^2+44*n-64)*a(n-3) +(689*n^3-5372*n^2+6946*n-1288)*a(n-4) +(n-4)*(201*n^2+2767*n-3011)*a(n-5) -(n-5)*(579*n+257)*(n-4)*a(n-6) +229*(n-5)*(n-6)*(n-4)*a(n-7)=0. - R. J. Mathar, Jan 29 2025

Extensions

More terms from Jinyuan Wang, Jan 07 2025

A378849 a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 48, 120, 309, 787, 2011, 5215, 13652, 35894, 94823, 251889, 672285, 1801185, 4842757, 13064059, 35349463, 95912989, 260896318, 711338596, 1943690464, 5321704006, 14597781706, 40112702176, 110404515703, 304338523999, 840140172621, 2322386563353
Offset: 0

Author

Emely Hanna Li Lobnig, Dec 09 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$3, 3][n+1],
          (2*(8*n^3+3*n^2-25*n-6)*a(n-1)-2*(n-1)*(12*n^2-9*n-10)*
           a(n-2)+(43*n+13)*(n-1)*(n-2)*a(n-3)-31*(n-1)*(n-2)*
            (n-3)*a(n-4))/(2*(2*n+3)*(n+3)*(n-2)))
        end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Dec 09 2024
  • PARI
    a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+1, k)/(k+1)) \\ Thomas Scheuerle, Dec 09 2024

Formula

a(n) = hypergeom([4/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 3/2, 2], -27/4). - Peter Luschny, Dec 18 2024

Extensions

More terms from Alois P. Heinz, Dec 09 2024

A378850 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -2.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 73, 190, 505, 1316, 3431, 9065, 24122, 64325, 172082, 462344, 1246685, 3371135, 9140289, 24847422, 67708743, 184906614, 505986933, 1387240401, 3810083424, 10481797131, 28880894706, 79692785251, 220203155689, 609242057143, 1687666776031
Offset: 0

Author

Emely Hanna Li Lobnig, Dec 09 2024

Keywords

Examples

			For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0).
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([4/3, 5/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 2/3, 5/2, 2], -27/4):
    seq(simplify(a(n)), n = 0..30);  # Peter Luschny, Dec 18 2024
  • PARI
    a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+3, k+1)/(2*k+3)) \\ Thomas Scheuerle, Dec 09 2024