cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071922 Unimodal analog of binomial coefficient, such that A071921(n,m) = a(n+m-1,n) for all (n,m) different from (0,0), arranged in a Pascal-like triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 7, 1, 1, 5, 16, 22, 11, 1, 1, 6, 25, 50, 46, 16, 1, 1, 7, 36, 95, 130, 86, 22, 1, 1, 8, 49, 161, 295, 296, 148, 29, 1, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 1, 10, 81, 372, 1036, 1792, 1897, 1163, 367, 46, 1, 1, 11, 100, 525, 1716, 3612
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002

Keywords

Comments

Also, number of n-length k-ary words avoiding the pattern 1'-2-1". - Ralf Stephan, Apr 28 2004
The matrix inverse starts
1;
-1, 1;
1, -2, 1;
-2, 5, -4, 1;
8, -21, 19, -7, 1;
-56, 148, -137, 55, -11, 1;
608, -1608, 1493, -608, 130, -16, 1;
-9440, 24968, -23190, 9461, -2044, 266, -22, 1;
198272, -524416, 487088, -198761, 42997, -5642, 490, -29, 1; - R. J. Mathar, Mar 15 2013

Examples

			Triangle begins
  1;
  1,   1;
  1,   2,   1;
  1,   3,   4,   1;
  1,   4,   9,   7,   1;
  1,   5,  16,  22,  11,   1;
  1,   6,  25,  50,  46,  16,   1;
  1,   7,  36,  95, 130,  86,  22,   1;
		

Programs

  • GAP
    Flat(List([0..11], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial( 2*j+k-1, 2*j) )))); # G. C. Greubel, Aug 26 2019
  • Magma
    [&+[Binomial(2*j+k-1, 2*j): j in [0..n-k]]: k in [0..n], n in [0..11]]; // G. C. Greubel, Aug 26 2019
    
  • Maple
    A071922 := proc(n,k)
        add( binomial(2*j+k-1,2*j),j=0..n-k) ;
    end proc: # R. J. Mathar, Mar 15 2013
  • Mathematica
    a[n_, m_]:= Sum[Binomial[2k+m-1, 2k], {k, 0, n-m}]; Flatten[ Table[ a[n, m], {n, 0, 11}, {m, 0, n}]]
  • PARI
    a(n,k) = sum(j=0, n-k, binomial(2*j+k-1, 2*j));
    for(n=0,11, for(k=0,n, print1(a(n,k), ", "))) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [[sum(binomial(2*j+k-1, 2*j) for j in (0..n-k)) for k in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019
    

Formula

a(n, m) = Sum_{k=0..n-m} binomial(2*k+m-1, 2*k).
Sum_{m=0..n} a(n, m) = 1 + Fibonacci(2*n).
Sum_{m=0..n} (-1)^m*a(n, m) = 1 if 3 divides n, 0 otherwise.
G.f. for k-th row: 1/(1-x)^(2k-1) + Sum_{j=1..k-1} x/(1-x)^(2j). - Ralf Stephan, Apr 28 2004

Extensions

Edited by Robert G. Wilson v, Jun 17 2002