A071922 Unimodal analog of binomial coefficient, such that A071921(n,m) = a(n+m-1,n) for all (n,m) different from (0,0), arranged in a Pascal-like triangle.
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 7, 1, 1, 5, 16, 22, 11, 1, 1, 6, 25, 50, 46, 16, 1, 1, 7, 36, 95, 130, 86, 22, 1, 1, 8, 49, 161, 295, 296, 148, 29, 1, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 1, 10, 81, 372, 1036, 1792, 1897, 1163, 367, 46, 1, 1, 11, 100, 525, 1716, 3612
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 2, 1; 1, 3, 4, 1; 1, 4, 9, 7, 1; 1, 5, 16, 22, 11, 1; 1, 6, 25, 50, 46, 16, 1; 1, 7, 36, 95, 130, 86, 22, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- S. Kitaev and T. Mansour, Partially ordered generalized patterns and k-ary words, arXiv:math/0210023 [math.CO], 2003.
- S. Kitaev and T. Mansour, Partially ordered generalized patterns and k-ary words, Annals of Combinatorics, 7(2) (2003), 191-200.
Programs
-
GAP
Flat(List([0..11], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial( 2*j+k-1, 2*j) )))); # G. C. Greubel, Aug 26 2019
-
Magma
[&+[Binomial(2*j+k-1, 2*j): j in [0..n-k]]: k in [0..n], n in [0..11]]; // G. C. Greubel, Aug 26 2019
-
Maple
A071922 := proc(n,k) add( binomial(2*j+k-1,2*j),j=0..n-k) ; end proc: # R. J. Mathar, Mar 15 2013
-
Mathematica
a[n_, m_]:= Sum[Binomial[2k+m-1, 2k], {k, 0, n-m}]; Flatten[ Table[ a[n, m], {n, 0, 11}, {m, 0, n}]]
-
PARI
a(n,k) = sum(j=0, n-k, binomial(2*j+k-1, 2*j)); for(n=0,11, for(k=0,n, print1(a(n,k), ", "))) \\ G. C. Greubel, Aug 26 2019
-
Sage
[[sum(binomial(2*j+k-1, 2*j) for j in (0..n-k)) for k in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019
Formula
a(n, m) = Sum_{k=0..n-m} binomial(2*k+m-1, 2*k).
Sum_{m=0..n} a(n, m) = 1 + Fibonacci(2*n).
Sum_{m=0..n} (-1)^m*a(n, m) = 1 if 3 divides n, 0 otherwise.
G.f. for k-th row: 1/(1-x)^(2k-1) + Sum_{j=1..k-1} x/(1-x)^(2j). - Ralf Stephan, Apr 28 2004
Extensions
Edited by Robert G. Wilson v, Jun 17 2002
Comments