cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A072176 Unimodal analog of Fibonacci numbers: a(n+1) = Sum_{k=0..floor(n/2)} A071922(n-k,k).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 16, 30, 56, 106, 201, 382, 727, 1384, 2636, 5021, 9565, 18222, 34715, 66137, 126001, 240052, 457338, 871304, 1659978, 3162533, 6025150, 11478911, 21869232, 41664520, 79377833, 151227961, 288114394, 548905795
Offset: 1

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 30 2002

Keywords

Comments

Based on the observation that F_{n+1} = Sum_{k} binomial (n-k,k). In both cases the sum is extended to 0<=2k<=n.

Crossrefs

Programs

  • GAP
    a:=[1,1,2,3,5];; for n in [6..40] do a[n]:=2*a[n-1]+a[n-2] -2*a[n-3]-a[n-4]+a[n-5]; od; a; # G. C. Greubel, Aug 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)) )); // G. C. Greubel, Aug 26 2019
    
  • Maple
    seq(coeff(series(x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Aug 26 2019
  • Mathematica
    Rest@CoefficientList[ Series[x(1-x-x^2)/((1-x)(1-x-2x^2+x^4)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2,1,-2,-1,1}, {1,1,2,3,5}, 40] (* Harvey P. Dale, Jun 23 2011 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4))) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    def A072176_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)) ).list()
    a=A072176_list(40); a[1:] # G. C. Greubel, Aug 26 2019
    

Formula

G.f.: x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)).
a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=5, a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Jun 23 2011

A005578 a(2*n) = 2*a(2*n-1), a(2*n+1) = 2*a(2*n)-1.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462, 10923, 21846, 43691, 87382, 174763, 349526, 699051, 1398102, 2796203, 5592406, 11184811, 22369622, 44739243, 89478486, 178956971, 357913942, 715827883, 1431655766, 2863311531, 5726623062, 11453246123
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Arima sequence" after Yoriyuki Arima who in 1769 constructed this sequence as the number of moves of the outer ring in the optimal solution for the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Let u(k), v(k), w(k) be the 3 sequences defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1) = u(k) + v(k), v(k+1) = u(k) + w(k), w(k+1) = v(k) + w(k); let M(k) = Max(u(k), v(k), w(k)); then a(n) = M(n). - Benoit Cloitre, Mar 25 2002
Unimodal analog of Fibonacci numbers: a(n+1) = Sum_{k=0..n/2} A071922(n-k, n-2*k). Based on the observation that F_{n+1} = Sum_{k} binomial (n-k, k). - Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 30 2002
Numbers n at which the length of the symmetric signed digit expansion of n with q=2 (i.e., the length of the representation of n in the (-1,0,1)2 number system) increases. - _Ralf Stephan, Jun 30 2003
Row sums of Riordan array (1/(1-x), x/(1-2*x^2)). - Paul Barry, Apr 24 2005
For n > 0, record-values of A107910: a(n) = A107910(A023548(n)). - Reinhard Zumkeller, May 28 2005
2^(n+1) = 2*a(n) + 2*A001045(n) + A000975(n-1); e.g., 2^6 = 64 = 2*a(5) + 2*A001045(5) + 2*A000975(4) = 2*11 + 2*11 + 2*10. Let a(n), A001045(n) and A000975(n-1) = the legs of a triangle (a, b, c). Then a(n-1), A001045(n-1) and A000975(n-2) = (S-c), (S-b), (S-a), where S = the triangle semiperimeter. Example: a(5), A001045(5) and A000975(4) = triangle (a, b, c) = (11, 11, 10). Then a(4), A001045(4), A000975(3) = (S-c), (S-b), (S-a) = (6, 5, 5). - Gary W. Adamson, Dec 24 2007
a(n) is the number of length-n binary representations of a nonnegative integer that is divisible by 3. The initial digits are allowed to be 0's. a(4) = 6 because we have 0000, 0011, 0110, 1001, 1100, 1111. - Geoffrey Critzer, Jan 13 2014
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 0, 1; 0, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [1, 1, 0; 1, 0, 1; 0, 1, 1]. - R. J. Mathar, Feb 04 2014
With 0 prefixed, this sequence is an autosequence of the first kind because the sequence of first differences A001045 is. Its companion is A052950. - Paul Curtz, Dec 18 2018, edited by M. F. Hasler, Dec 21 2018
Apparently, the sequence gives the distinct values taken by A129761, the first differences of fibbinary numbers. - Rémy Sigrist, Oct 26 2019
The sequence with offset 1 can be generated in three steps starting with A158780. First, put in alternate signs (1, -1, 1, -2, 2, -4, ...) and take the inverse; getting (1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ...). Take the invert transform of the latter, resulting in the sequence. It follows from the inverti transform being 1, 1, 0, 1, 1, 2, 3, ... that (for example), a(9) = 171 = (1, 1, 0, 1, 1, 2, 3, 5, 8) dot (86, 43, 0, 11, 6, 6, 6, 5, 8) = (86 + 43 + 0 + 11 + 6 + 6 + 6 + 5 + 8). A similar procedure is shown in the Aug 08 2019 comment of A006356. - Gary W. Adamson, Feb 04 2022

References

  • R. K. Guy, Graphs and the strong law of small numbers. Graph theory, combinatorics and applications. Vol. 2 (Kalamazoo, MI, 1988), 597-614, Wiley-Intersci. Publ., Wiley, New York, 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections: A007583 and A047849.
Cf. also A000975, A001045 (first differences), A129761.
Cf. A006356.

Programs

  • GAP
    List([0..40],n->(2^(n+1)+3+(-1)^n)/6); # Muniru A Asiru, Dec 22 2018
    
  • Magma
    [(2^(n+1)+3+(-1)^n)/6: n in [0..40]]; // Vincenzo Librandi, Aug 14 2011
    
  • Maple
    A005578:=-(-1+z+z^2)/((z-1)*(2*z-1)*(z+1)); # Simon Plouffe in his 1992 dissertation
    with(combstruct):ZL0:=S=Prod(Sequence(Prod(a, Sequence(b))), a):ZL1:=Prod(begin_blockP, Z, end_blockP):ZL2:=Prod(begin_blockLR, Z, Sequence(Prod(mu_length, Z), card>=1), end_blockLR): ZL3:=Prod(begin_blockRL, Sequence(Prod(mu_length, Z), card>=1), Z, end_blockRL):Q:=subs([a=Union(ZL3), b=ZL3], ZL0), begin_blockP=Epsilon, end_blockP=Epsilon, begin_blockLR=Epsilon, end_blockLR=Epsilon, begin_blockRL=Epsilon, end_blockRL=Epsilon, mu_length=Epsilon:temp15:=draw([S, {Q}, unlabelled], size=15):seq(count([S, {Q}, unlabelled], size=n), n=2..34); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    a=0; Table[a=2^n-a;(a/2+1)/2,{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Nov 22 2009 *)
    LinearRecurrence[{2,1,-2}, {1,1,2}, 40] (* G. C. Greubel, Aug 26 2019 *)
  • PARI
    a(n)=(2^(n+1)+3+(-1)^n)/6 \\ Charles R Greathouse IV, Mar 22 2016
    
  • Python
    print([1+2**n//3 for n in range(40)])  # Gennady Eremin, Feb 05 2022
  • Sage
    [(2^(n+1)+3+(-1)^n)/6 for n in (0..40)] # G. C. Greubel, Aug 26 2019
    

Formula

a(n) = ceiling(2^n/3).
a(n) = 1 + floor((2^n)/3) (proof by mathematical induction).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
From Paul Barry, Jul 20 2003: (Start)
a(n) = A001045(n) + A000035(n+1), where A000035 = (0, 1, 0, 1, ...).
G.f.: (1 - x - x^2)/((1-x^2)*(1-2*x)). [Guy, 1988];
E.g.f.: (exp(2*x) - exp(-x))/3 + cosh(x) = (2*exp(2*x) + 3*exp(x) + exp(-x))/6. (End)
The 30 listed terms are given by a(0)=1, a(1)=1 and, for n > 1, by a(n) = a(n-1) + a(n-2) + Sum_{i=0..n-4} Fibonacci(i)*a(n-4-i). - John W. Layman, Jan 07 2000
a(n) = (2^(n+1) + 3 + (-1)^n)/6. - Vladeta Jovovic, Jul 02 2002
Binomial transform of A001045(n-1)(-1)^n + 0^n/2. - Paul Barry, Apr 28 2004
a(n) = (1 + A001045(n+1))/2. - Paul Barry, Apr 28 2004
a(n) = Sum_{k=0..n} (-1)^k*Sum_{j=0..n-k} (if((j-k) mod 2)=0, binomial(n-k, j), 0). - Paul Barry, Jan 25 2005
Let M = the 6 X 6 adjacency matrix of a benzene ring, (reference): [0,1,0,0,0,1; 1,0,1,0,0,0; 0,1,0,1,0,0; 0,0,1,0,1,0; 0,0,0,1,0,1; 1,0,0,0,1,0]. Then a(n) = leftmost nonzero term of M^n * [1,0,0,0,0,0]. E.g.: a(6) = 22 since M^6 * [1,0,0,0,0,0] = [22,0,21,0,21,0]. - Gary W. Adamson, Jun 14 2006
Starting (1, 2, 3, 6, 11, 22, ...), = row sums of triangle A135229. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), A000975(n-1)]. - Gary W. Adamson, Dec 24 2007
a(n) = 1 + 2^(n-1) - a(n-1) = a(n-1) + 2*a(n-2) - 1 = a(n-2) + 2^(n-2). - Paul Curtz, Jan 31 2009
a(n) = A023105(n+1) - 1. - Carl Joshua Quines, Jul 17 2019

Extensions

Edited by N. J. A. Sloane, Jun 20 2015

A210219 Triangle of coefficients of polynomials u(n,x) jointly generated with A210220; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 7, 1, 5, 16, 22, 11, 1, 6, 25, 50, 46, 16, 1, 7, 36, 95, 130, 86, 22, 1, 8, 49, 161, 295, 296, 148, 29, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 10, 81, 372, 1036, 1792, 1897, 1163, 367, 46, 1, 11, 100, 525, 1716, 3612, 4900, 4166, 2083, 541, 56, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 19 2012

Keywords

Comments

First two terms in row n: n,(n-1)^2; last term: 1.
Period of alternating row sums: (1,1,0).
For a discussion and guide to related arrays, see A208510.
Apparently this is A071920 without the marginal zeros, read by downwards antidiagonals, or T(n,k) = A071922(n,k). - R. J. Mathar, May 17 2014

Examples

			First five rows:
  1
  2...1
  3...4....1
  4...9....7....1
  5...16...22...11...1
First three polynomials u(n,x): 1, 2 + x, 3 + 4x + x^2.
		

Crossrefs

Cf. A210220, A208510, A001906 (row sums).

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]     (* A210219 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]     (* A210220 *)
    (* alternative program *)
    T[n_,k_] := Sum[Binomial[k, 2*j]*Binomial[n-j, k], {j, 0, Floor[k/2]}]; Flatten[Table[T[n, k],{n, 1, 11}, {k, 1, n}]] (* Detlef Meya, Dec 05 2023 *)
  • PARI
    T(n,k) = sum(j=0, k\2, binomial(k,2*j)*binomial(n-j,k)) \\ Andrew Howroyd, Jan 01 2024

Formula

u(n,x) = x*u(n-1,x) + v(n-1,x) + 1, v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x) + 1, where u(1,x)=1, v(1,x)=1.
T(n,k) = Sum_{j=0..floor(k/2)} binomial(k,2*j)*binomial(n-j,k). - Detlef Meya, Dec 05 2023

A072285 Numerators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 15, 2, 1, 1, 35, 3, 5, 1, 1, 315, 4, 35, 3, 1, 1, 693, 5, 105, 6, 7, 1, 1, 3003, 6, 1155, 10, 63, 4, 1, 1, 6435, 7, 3003, 15, 231, 10, 9, 1, 1, 109395, 8, 15015, 21, 3003, 20, 99, 5, 1, 1, 230945, 9, 36465, 28, 9009, 35, 429, 15, 11, 1
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Numerator[a[n, m]], {n, 0, 11}, {m, 0, n}]]
  • PARI
    a(n,m) = binomial(n-m/2, n-m);
    for(n=0,10, for(m=0,n, print1(numerator(a(n,m)), ", "))) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [[numerator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019

Formula

a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).

A072286 Denominators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 16, 1, 2, 1, 1, 128, 1, 8, 1, 1, 1, 256, 1, 16, 1, 2, 1, 1, 1024, 1, 128, 1, 8, 1, 1, 1, 2048, 1, 256, 1, 16, 1, 2, 1, 1, 32768, 1, 1024, 1, 128, 1, 8, 1, 1, 1, 65536, 1, 2048, 1, 256, 1, 16, 1, 2, 1, 1, 262144, 1, 32768, 1, 1024, 1, 128, 1, 8, 1, 1
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002

Keywords

Comments

Entries are powers of 2.

Crossrefs

Programs

  • Mathematica
    a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Denominator[a[n, m]], {n, 0, 11}, {m, 0, n}]]
  • PARI
    a(n,m) = binomial(n-m/2, n-m);
    for(n=0,11, for(m=0,n, print1(denominator(a(n,m)), ", "))) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [[denominator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019

Formula

a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).
Showing 1-5 of 5 results.