A071948 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.
1, 1, 2, 1, 4, 7, 1, 6, 18, 30, 1, 8, 33, 88, 143, 1, 10, 52, 182, 455, 728, 1, 12, 75, 320, 1020, 2448, 3876, 1, 14, 102, 510, 1938, 5814, 13566, 21318, 1, 16, 133, 760, 3325, 11704, 33649, 76912, 120175, 1, 18, 168, 1078, 5313, 21252, 70840, 197340, 444015
Offset: 0
Examples
Triangle begins 1; 1, 2; 1, 4, 7; 1, 6, 18, 30; 1, 8, 33, 88, 143;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- L. Carlitz, Enumeration of two-line arrays, Fib. Quart., Vol. 11 Number 2 (1973), 113-130.
- S. Dulucq, Etude combinatoire de problèmes d'énumération, d'algorithmique sur les arbres et de codage par des mots, a thesis presented to l'Université de Bordeaux I, 1987. (Annotated scanned copy)
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
Crossrefs
Programs
-
Maple
T := proc(n,k) if k<=n then (n-k+1)*binomial(2*n+k+1,k)/(n+1) else 0 fi end: seq(seq(T(n,k),k=0..n),n=0..10);
-
Mathematica
t[n_, k_] /; k <= n := (n-k+1)*Binomial[2*n+k+1, k]/(n+1); t[, ] = 0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
-
Sage
# Computes the first n rows of the triangle. def A071948_triangle(n) : D = [0 for i in (0..n+1)]; D[1] = 1 for i in (4..2*n+3) : h = i//2 - 1 for k in (1..h) : D[k] += D[k-1] if i%2 == 1 : print([D[z] for z in (1..h)]) A071948_triangle(10) # Peter Luschny, Apr 01 2012
Formula
T(n, n) = A006013(n).
T(n, k) = (n-k+1)binomial(2n+k+1, k)/(n+1) if k<=n.
Let M = the infinite square production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
The top row of M^n gives reversed terms of n-th row of triangle A071948; with leftmost terms of each row generating A006013 starting (1, 2, 7, 30, 143, ...). - Gary W. Adamson, Jul 07 2011
Extensions
Edited by Emeric Deutsch, Mar 04 2004
Comments