cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006013 a(n) = binomial(3*n+1,n)/(n+1).

Original entry on oeis.org

1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, 142498692, 859515920, 5225264024, 31983672534, 196947587823, 1219199353190, 7583142491925, 47365474641870, 296983176369495, 1868545312633440, 11793499763070480
Offset: 0

Views

Author

Keywords

Comments

Enumerates pairs of ternary trees [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
G.f. (offset 1) is series reversion of x - 2x^2 + x^3.
Hankel transform is A005156(n+1). - Paul Barry, Jan 20 2007
a(n) = number of ways to connect 2*n - 2 points labeled 1, 2, ..., 2*n-2 in a line with 0 or more noncrossing arcs above the line such that each maximal contiguous sequence of isolated points has even length. For example, with arcs separated by dashes, a(3) = 7 counts {} (no arcs), 12, 14, 23, 34, 12-34, 14-23. It does not count 13 because 2 is an isolated point. - David Callan, Sep 18 2007
In my 2003 paper I introduced L-algebras. These are K-vector spaces equipped with two binary operations > and < satisfying (x > y) < z = x > (y < z). In my arXiv paper math-ph/0709.3453 I show that the free L-algebra on one generator is related to symmetric ternary trees with odd degrees, so the dimensions of the homogeneous components are 1, 2, 7, 30, 143, .... These L-algebras are closely related to the so-called triplicial-algebras, 3 associative operations and 3 relations whose free object is related to even trees. - Philippe Leroux (ph_ler_math(AT)yahoo.com), Oct 05 2007
a(n-1) is also the number of projective dependency trees with n nodes. - Marco Kuhlmann (marco.kuhlmann(AT)lingfil.uu.se), Apr 06 2010
Number of subpartitions of [1^2, 2^2, ..., n^2]. - Franklin T. Adams-Watters, Apr 13 2011
a(n) = sum of (n+1)-th row terms of triangle A143603. - Gary W. Adamson, Jul 07 2011
Also the number of Dyck n-paths with up steps colored in two ways (N or A) and avoiding NA. The 7 Dyck 2-paths are NDND, ADND, NDAD, ADAD, NNDD, ANDD, and AADD. - David Scambler, Jun 24 2013
a(n) is also the number of permutations avoiding 213 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
With offset 1, a(n) is the number of ordered trees (A000108) with n non-leaf vertices and n leaf vertices such that every non-leaf vertex has a leaf child (and hence exactly one leaf child). - David Callan, Aug 20 2014
a(n) is the number of paths in the plane with unit east and north steps, never going above the line x=2y, from (0,0) to (2n+1,n). - Ira M. Gessel, Jan 04 2018
a(n) is the number of words on the alphabet [n+1] that avoid the patterns 231 and 221 and contain exactly one 1 and exactly two occurrences of every other letter. - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n of each type of step, such that (1, 1) and (1, 0) alternate (ignoring (-1, 1) steps). All paths start with a (1, 1) step. - Helmut Prodinger, Apr 08 2019
Hankel transform omitting a(0) is A051255(n+1). - Michael Somos, May 15 2022
If f(x) is the generating function for (-1)^n*a(n), a real solution of the equation y^3 - y^2 - x = 0 is given by y = 1 + x*f(x). In particular 1 + f(1) is Narayana's cow constant, A092526, aka the "supergolden" ratio. - R. James Evans, Aug 09 2023
This is instance k = 2 of the family {c(k, n+1)}A130564.%20_Wolfdieter%20Lang">{n>=0} described in A130564. _Wolfdieter Lang, Feb 04 2024
Also the number of quadrangulations of a (2n+4)-gon which do not contain any diagonals incident to a fixed vertex. - Esther Banaian, Mar 12 2025

Examples

			a(3) = 30 since the top row of Q^3 = (12, 12, 5, 1).
G.f. = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 + 21318*x^7 + ... - _Michael Somos_, May 15 2022
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

These are the odd indices of A047749.
Cf. A305574 (the same with offset 1 and the initial 1 replaced with 5).
Cf. A130564 (comment on c(k, n+1)).

Programs

  • Haskell
    a006013 n = a007318 (3 * n + 1) n `div` (n + 1)
    a006013' n = a258708 (2 * n + 1) n
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(3*n+1,n)/(n+1): n in [0..30]]; // Vincenzo Librandi, Mar 29 2015
    
  • Mathematica
    Binomial[3#+1,#]/(#+1)&/@Range[0,30]  (* Harvey P. Dale, Mar 16 2011 *)
  • PARI
    A006013(n) = binomial(3*n+1,n)/(n+1) \\ M. F. Hasler, Jan 08 2024
    
  • Python
    from math import comb
    def A006013(n): return comb(3*n+1,n)//(n+1) # Chai Wah Wu, Jul 30 2022
  • Sage
    def A006013_list(n) :
        D = [0]*(n+1); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            for k in (1..h) : D[k] += D[k-1]
            if b : R.append(D[h]); h += 1
            b = not b
        return R
    A006013_list(23) # Peter Luschny, May 03 2012
    

Formula

G.f. is square of g.f. for ternary trees, A001764 [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
Convolution of A001764 with itself: 2*C(3*n + 2, n)/(3*n + 2), or C(3*n + 2, n+1)/(3*n + 2).
G.f.: (4/(3*x)) * sin((1/3)*arcsin(sqrt(27*x/4)))^2.
G.f.: A(x)/x with A(x)=x/(1-A(x))^2. - Vladimir Kruchinin, Dec 26 2010
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) is the top left term in M^n, where M is the infinite square production matrix:
2, 1, 0, 0, 0, ...
3, 2, 1, 0, 0, ...
4, 3, 2, 1, 0, ...
5, 4, 3, 2, 1, ...
... (End)
From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is the sum of top row terms in Q^n, where Q is the infinite square production matrix as follows:
1, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
3, 3, 2, 1, 0, ...
4, 4, 3, 2, 1, ...
... (End)
D-finite with recurrence: 2*(n+1)*(2n+1)*a(n) = 3*(3n-1)*(3n+1)*a(n-1). - R. J. Mathar, Dec 17 2011
a(n) = 2*A236194(n)/n for n > 0. - Bruno Berselli, Jan 20 2014
a(n) = A258708(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015
From Ilya Gutkovskiy, Dec 29 2016: (Start)
E.g.f.: 2F2([2/3, 4/3]; [3/2,2]; 27*x/4).
a(n) ~ 3^(3*n+3/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). (End)
a(n) = A110616(n+1, 1). - Ira M. Gessel, Jan 04 2018
0 = v0*(+98415*v2 -122472*v3 +32340*v4) +v1*(+444*v3 -2968*v4) +v2*(-60*v2 +56*v3 +64*v4) where v0=a(n)^2, v1=a(n)*a(n+1), v2=a(n+1)^2, v3=a(n+1)*a(n+2), v4=a(n+2)^2 for all n in Z if a(-1)=-2/3 and a(n)=0 for n<-1. - Michael Somos, May 15 2022
a(n) = (1/4^n) * Product_{1 <= i <= j <= 2*n} (2*i + j + 2)/(2*i + j - 1). Cf. A000260. - Peter Bala, Feb 21 2023
From Karol A. Penson, Jun 02 2023: (Start)
a(n) = Integral_{x=0..27/4} x^n*W(x) dx, where
W(x) = (((9 + sqrt(81 - 12*x))^(2/3) - (9 - sqrt(81 - 12*x))^(2/3)) * 2^(1/3) * 3^(1/6)) / (12 * Pi * x^(1/3)), for x in (0, 27/4).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 27/4. At x = 27/4 the first derivative of W(x) is infinite. (End)
G.f.: hypergeometric([2/3,1,4/3], [3/2,2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = A024485(n+1)/3. - Michael Somos, Oct 14 2024
G.f.: (Sum_{n >= 0} binomial(3*n+2, n)*x^n) / (Sum_{n >= 0} binomial(3*n, n)*x^n) = (B(x) - 1)/(x*B(x)), where B(x) = Sum_{n >= 0} binomial(3*n, n)/(2*n+1) * x^n is the g.f. of A001764. - Peter Bala, Dec 13 2024
The g.f. A(x) is uniquely determined by the conditions A(0) = 1 and [x^n] A(x)^(-n) = -2 for all n >= 1. Cf. A006632. - Peter Bala, Jul 24 2025

Extensions

Edited by N. J. A. Sloane, Feb 21 2008

A193091 Augmentation of the triangular array A158405. See Comments.

Original entry on oeis.org

1, 1, 3, 1, 6, 14, 1, 9, 37, 79, 1, 12, 69, 242, 494, 1, 15, 110, 516, 1658, 3294, 1, 18, 160, 928, 3870, 11764, 22952, 1, 21, 219, 1505, 7589, 29307, 85741, 165127, 1, 24, 287, 2274, 13355, 61332, 224357, 638250, 1217270, 1, 27, 364, 3262, 21789, 115003
Offset: 0

Views

Author

Clark Kimberling, Jul 30 2011

Keywords

Comments

Suppose that P is an infinite triangular array of numbers:
p(0,0)
p(1,0)...p(1,1)
p(2,0)...p(2,1)...p(2,2)
p(3,0)...p(3,1)...p(3,2)...p(3,3)...
...
Let w(0,0)=1, w(1,0)=p(1,0), w(1,1)=p(1,1), and define
W(n)=(w(n,0), w(n,1), w(n,2),...w(n,n-1), w(n,n)) recursively by W(n)=W(n-1)*PP(n), where PP(n) is the n X (n+1) matrix given by
...
row 0 ... p(n,0) ... p(n,1) ...... p(n,n-1) ... p(n,n)
row 1 ... 0 ..... p(n-1,0) ..... p(n-1,n-2) .. p(n-1,n-1)
row 2 ... 0 ..... 0 ............ p(n-2,n-3) .. p(n-2,n-2)
...
row n-1 . 0 ..... 0 ............. p(2,1) ..... p(2,2)
row n ... 0 ..... 0 ............. p(1,0) ..... p(1,1)
...
The augmentation of P is here introduced as the triangular array whose n-th row is W(n), for n>=0. The array P may be represented as a sequence of polynomials; viz., row n is then the vector of coefficients: p(n,0), p(n,1),...,p(n,n), from p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n). For example, (C(n,k)) is represented by ((x+1)^n); using this choice of P (that is, Pascal's triangle), the augmentation of P is calculated one row at a time, either by the above matrix products or by polynomial substitutions in the following manner:
...
row 0 of W: 1, by decree
row 1 of W: 1 augments to 1,1
...polynomial version: 1 -> x+1
row 2 of W: 1,1 augments to 1,3,2
...polynomial version: x+1 -> (x^2+2x+1)+(x+1)=x^2+3x+2
row 3 to W: 1,3,2 augments to 1,6,11,6
...polynomial version:
x^2+3x+2 -> (x+1)^3+3(x+1)^2+2(x+1)=(x+1)(x+2)(x+3)
...
Examples of augmented triangular arrays:
(p(n,k)=1) augments to A009766, Catalan triangle.
Catalan triangle augments to A193560.
Pascal triangle augments to A094638, Stirling triangle.
A002260=((k+1)) augments to A023531.
A154325 augments to A033878.
A158405 augments to A193091.
((k!)) augments to A193092.
A094727 augments to A193093.
A130296 augments to A193094.
A004736 augments to A193561.
...
Regarding the specific augmentation W=A193091: w(n,n)=A003169.
From Peter Bala, Aug 02 2012: (Start)
This is the table of g(n,k) in the notation of Carlitz (p. 124). The triangle enumerates two-line arrays of positive integers
............a_1 a_2 ... a_n..........
............b_1 b_2 ... b_n..........
such that
1) max(a_i, b_i) <= min(a_(i+1), b_(i+1)) for 1 <= i <= n-1
2) max(a_i, b_i) <= i for 1 <= i <= n
3) max(a_n, b_n) = k.
See A071948 and A211788 for other two-line array enumerations.
(End)

Examples

			The triangle P, at A158405, is given by rows
  1
  1...3
  1...3...5
  1...3...5...7
  1...3...5...7...9...
The augmentation of P is the array W starts with w(0,0)=1, by definition of W.
Successive polynomials (rows of W) arise from P as shown here:
  ...
  1->x+3, so that W has (row 1)=(1,3);
  ...
  x+3->(x^2+3x+5)+3*(x+3), so that W has (row 2)=(1,6,14);
  ...
  x^2+6x+14->(x^3+3x^2+5x+7)+6(x^2+3x+5)+14(x+3), so that (row 3)=(1,9,37,79).
  ...
First 7 rows of W:
  1
  1    3
  1    6    14
  1    9    37    79
  1   12    69   242    494
  1   15   110   516   1658    3294
  1   18   160   928   3870   11764   22952
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := 2 k + 1
    Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A158405 *)
    m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
    TableForm[m[4]]
    w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
    v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
    v[n_] := v[n - 1].m[n]
    TableForm[Table[v[n], {n, 0, 6}]] (* A193091 *)
    Flatten[Table[v[n], {n, 0, 9}]]

Formula

From Peter Bala, Aug 02 2012: (Start)
T(n,k) = (n-k+1)/n*Sum_{i=0..k} C(n+1,n-k+i+1)*C(2*n+i+1,i) for 0 <= k <= n.
Recurrence equation: T(n,k) = Sum_{i=0..k} (2*k-2*i+1)*T(n-1,i).
(End)

A211788 Triangle enumerating certain two-line arrays of positive integers.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 7, 21, 21, 1, 10, 47, 126, 126, 1, 13, 82, 324, 818, 818, 1, 16, 126, 642, 2300, 5594, 5594, 1, 19, 179, 1107, 4977, 16741, 39693, 39693, 1, 22, 241, 1746, 9335, 38642, 124383, 289510, 289510, 1, 25, 312, 2586, 15941, 77273, 301630, 939880, 2157150, 2157150
Offset: 1

Views

Author

Peter Bala, Aug 02 2012

Keywords

Comments

This is the table of f(n,k) in the notation of Carlitz (p.123). The triangle enumerates two-line arrays of positive integers
............a_1 a_2 ... a_n..........
............b_1 b_2 ... b_n..........
such that
1) max(a_i, b_i) <= min(a_(i+1), b_(i+1)) for 1 <= i <= n-1
2) max(a_i, b_i) <= i for 1 <= i <= n
3) a_n = b_n = k.
See A071948 and A193091 for other two-line array enumerations.
It appears that the row reverse array is the Riordan array (f(x), g(x)), where f(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 818*x^5 + ... is the g.f. of A003168 and g(x) = x + 3*x^2 + 14*x^3 + 79*x^4 + 494*x^5 + 3294*x^6 + ... is the g.f. of A003169. - Peter Bala, Nov 26 2024

Examples

			Triangle begins
.n\k.|..1....2....3....4....5....6
= = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....1
..3..|..1....4....4
..4..|..1....7...21...21
..5..|..1...10...47..126..126
..6..|..1...13...82..324..818..818
...
T(4,2) = 7: The 7 two-line arrays are
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 1 2
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 2 2
...........................................
...1 1 2 2....1 1 2 2....1 2 2 2...........
...1 1 1 2....1 2 2 2....1 1 2 2...........
		

Crossrefs

Cf. A003168 (main diagonal), A211789 (row sums).

Formula

Recurrence equation:
T(1,1) = 1; T(n,n) = T(n,n-1); T(n+1,k) = Sum_{j = 1..k} (2*k-2*j+1)*T(n,j) for 1 <= k <= n.
T(n+1,k+1) = (1/n) * ((n - k)*Sum_{i = 0..k} C(n, k-i)*C(2*n+i, i) + Sum_{i = 1..k} C(n, k-i)*C(2*n+i, i-1)).
Row reverse has production matrix
1 1
3 3 1
5 5 3 1
7 7 5 3 1
...
Main diagonal T(n,n) = A003168(n). Row sums A211789.
Showing 1-3 of 3 results.