cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071952 Diagonal T(n, 4) of triangle in A071951.

Original entry on oeis.org

1, 40, 1092, 25664, 561104, 11807616, 243248704, 4950550528, 100040447232, 2013177300992, 40412056994816, 810023815790592, 16221871691714560, 324694197936160768, 6496965245491888128, 129976281056339296256
Offset: 4

Views

Author

N. J. A. Sloane, Jun 16 2002

Keywords

Crossrefs

Programs

  • GAP
    List([4..20], n-> 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315); # G. C. Greubel, Mar 16 2019
  • Magma
    [2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315: n in [4..20]]; // G. C. Greubel, Mar 16 2019
    
  • Mathematica
    Flatten[ Table[ Sum[(-1)^{r + 4}(2r + 1)(r^2 + r)^n/((r + 5)!(4 - r)!), {r, 1, 4}], {n, 4, 20}]]
    LinearRecurrence[{40, -508, 2304, -2880}, {1, 40, 1092, 25664}, 20] (* G. C. Greubel, Mar 16 2019 *)
  • PARI
    {a(n) = 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315}; \\ G. C. Greubel, Mar 16 2019
    
  • Sage
    [2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315 for n in (4..20)] # G. C. Greubel, Mar 16 2019
    

Formula

From Wolfdieter Lang, Nov 07 2003: (Start)
a(n+4) = A071951(n+4, 4) = (-7*2^n + 405*6^n - 2268*12^n + 2500*20^n)/630, n >= 0.
G.f.: x^4/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)*(1-5*4*x)). (End)
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n-4), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467) and n > 3. - Mircea Merca, Apr 06 2013
From G. C. Greubel, Mar 16 2019: (Start)
a(n) = 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315.
E.g.f.: (1 - exp(2*x))^4*(14 + 28*exp(2*x) + 28*exp(4*x) + 20*exp(6*x) + 10*exp(8*x) + 4*exp(10*x) + exp(12*x))/8!. (End)

Extensions

More terms from Robert G. Wilson v, Jun 19 2002
Definition corrected by Georg Fischer, Jul 07 2025