cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071953 Diagonal T(n,n-2) of triangle in A071951.

Original entry on oeis.org

4, 52, 292, 1092, 3192, 7896, 17304, 34584, 64284, 112684, 188188, 301756, 467376, 702576, 1028976, 1472880, 2065908, 2845668, 3856468, 5150068, 6786472, 8834760, 11373960, 14493960, 18296460, 22895964, 28420812, 35014252
Offset: 3

Views

Author

N. J. A. Sloane, Jun 16 2002

Keywords

Crossrefs

Programs

  • GAP
    List([3..30], n-> (n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90); # G. C. Greubel, Mar 16 2019
  • Magma
    [(n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90: n in [3..30]]; // G. C. Greubel, Mar 16 2019
    
  • Mathematica
    Flatten[ Table[ Sum[(-1)^{r + n - 2}(2r + 1)(r^2 + r)^n/((r + n - 1)!(n - 2 - r)!), {r, 1, n - 2}], {n, 3, 34}]]
    Table[(n-2)(n-1)n(n+1)(5n^2-11n+3)/90,{n,3,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{4,52,292,1092,3192, 7896,17304}, 30] (* Harvey P. Dale, Jul 03 2011 *)
  • PARI
    {a(n) = (n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90}; \\ G. C. Greubel, Mar 16 2019
    
  • Sage
    [(n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90 for n in (3..30)] # G. C. Greubel, Mar 16 2019
    

Formula

a(n) = (n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90.
a(0)=4, a(1)=52, a(2)=292, a(3)=1092, a(4)=3192, a(5)=7896, a(6)=17304, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Jul 03 2011
G.f.: 4*(3*x*(x+2)+1)/(1-x)^7. - Harvey P. Dale, Jul 03 2011
E.g.f.: x^3*(60 + 135*x + 54*x^2 + 5*x^3)*exp(x)/90. - G. C. Greubel, Mar 16 2019

Extensions

More terms from Robert G. Wilson v, Jun 19 2002