A071963 Largest prime factor of p(n), the n-th partition number A000041(n) (with a(0) = a(1) = 1 by convention).
1, 1, 2, 3, 5, 7, 11, 5, 11, 5, 7, 7, 11, 101, 5, 11, 11, 11, 11, 7, 19, 11, 167, 251, 7, 89, 29, 43, 13, 83, 467, 311, 23, 23, 1231, 41, 17977, 281, 43, 11, 127, 193, 2417, 71, 97, 1087, 241, 67, 7013, 631, 9283, 661, 53, 5237, 59, 227, 1019, 102359, 3251, 199, 409, 971
Offset: 0
Keywords
Examples
A000041(110) = 607163746 = 2*7*4049*10711, therefore a(110)=10711. - _Reinhard Zumkeller_, Aug 23 2003
Links
- Giovanni Resta, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- J. Cilleruelo and F. Luca, On the largest prime factor of the partition function of n.
- Eric Weisstein's World of Mathematics, Greatest Prime Factor.
- Eric Weisstein's World of Mathematics, Partition Function.
- Wikipedia, Partition function.
Programs
-
Mathematica
Table[First[Last[FactorInteger[PartitionsP[n]]]], {n, 0, 100}] (* Jonathan Sondow, Aug 16 2011 *)
-
PARI
for(n=2,75,print1(vecmax(component(factor(polcoeff(1/eta(x),n,x)),1)),","))
-
PARI
a(n)=local(v); if(n<2,n>=0,v=factor(polcoeff(1/eta(x+x*O(x^n)),n))~[1,]; v[ #v])
-
PARI
a(n)=if(n<2,1,factor(numbpart(n))[1,1]) \\ Charles R Greathouse IV, May 29 2015
Extensions
Corrected by T. D. Noe, Nov 15 2006
Edited by N. J. A. Sloane, Oct 27 2008 at the suggestion of R. J. Mathar
a(0) = 1 added by N. J. A. Sloane, Sep 13 2009
Comments