cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071975 Denominator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 4, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 12, 1, 26, 9, 7, 29, 30, 31, 8, 33, 34, 35, 1, 37, 38, 39, 20, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 18, 55, 28, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 4, 73, 74, 3, 19, 77
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Programs

  • Haskell
    a071975 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (e `mod` 2) * (e + 1) `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
  • Mathematica
    f[{p_, a_}] := If[OddQ[a], p^((a+1)/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,v[1,k]^-(-v[2,k]\2),1))
    

Formula

If n = Product p_i^e_i, then a(n) = Product p_i^f(e_i), where f(n) = (n+1)/2 if n is odd and f(n) = 0 if n is even. - Reiner Martin, Jul 08 2002
From Reinhard Zumkeller, Jul 10 2011: (Start)
a(n^2) = 1, A071974(n^2) = n, cf. A000290.
a(2*(2*n-1)^2) = 2, A071974(2*(2*n-1)^2) = 2*n+1, cf. A077591.
a(2*(2*n-1)^2) = 2, A071974(2*(2*n-1)^2) = 2*n+1, cf. A077591. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4*zeta(3)/180) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6) = 0.3394877587... . - Amiram Eldar, Oct 30 2022

Extensions

More terms from Reiner Martin, Jul 08 2002