A072019 Generalized Bell numbers B_{5,2}.
1, 31, 2481, 371881, 89281461, 31274052351, 15020526041221, 9461707887414161, 7560380738419084201, 7466459670646734124671, 8925493084998518977531001, 12696331763378714706289411961, 21186586117648690791837844061341, 40976310644118022811682503135528671, 90905327647146969025291153908894514381, 229256189615621846477632508681520371943201
Offset: 1
Keywords
Links
- P. Blasiak, Karol A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
Crossrefs
Cf. A072020.
Programs
-
Mathematica
a[n_] := Sum[ 1/9*(3^n)^2 * Gamma[n + 1/3*k + 1/3] * Gamma[n + 1/3*k + 2/3] / Gamma[4/3 + 1/3*k ] / Gamma[5/3 + 1/3*k]/k!/Exp[1], {k, 0, Infinity}] (* Second program: *) a[n_] := Sum[Product[FactorialPower[k+3*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Sep 01 2016 *)
Formula
a(n) = Sum_{k=2..2*n} A091534(n, k) = (Sum_{k>=2} (1/k!)*Product_{j=1..n} fallfac(k+3*(j-1), 2))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=5, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
Sum of an infinite series: a(n) = Sum_{k>=0} (1/9 * (3^n)^2 * Gamma(n+k/3+1/3) * Gamma(n+k/3+2/3) / (Gamma(4/3+k/3) * Gamma(5/3+k/3) * k! * exp(1))).
Comments