cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A091534 Generalized Stirling2 array (5,2).

Original entry on oeis.org

1, 20, 10, 1, 1120, 1040, 290, 30, 1, 123200, 161920, 71320, 14040, 1340, 60, 1, 22422400, 37452800, 22097600, 6263040, 958720, 82800, 4000, 100, 1, 6098892800, 12222918400, 8928102400, 3257116800, 675281600, 84782880, 6625920, 322000
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The row length sequences for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2.
Cf. A072019 (row sums), A091537 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k/k!*Sum[(-1)^p*Binomial[k, p]*Product[FactorialPower[p + 3*(j - 1), 2], {j, 1, n}], {p, 2, k}]; Table[a[n, k], {n, 1, 8}, {k, 2, 2 n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+3*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=5, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(3*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=5, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A072020 Sum of an infinite series: a(n) = Sum_{k = 0..infinity} ((1/27) * (3^n)^3 * Gamma(n+1/3*k+1/3) * Gamma(n+1/3*k+2/3) * Gamma(n+1/3*k+1)) / (Gamma(4/3+1/3*k) * Gamma(5/3+1/3*k) * Gamma(2+1/3*k) * exp(1) * k!).

Original entry on oeis.org

1, 229, 207775, 472630861, 2148321709561, 17028146983530961, 214877019857456672479, 4044349155369603186936985, 108105412214943249140163409201, 3949854849387058592656207156530781, 191308664212963089686669131219301608831
Offset: 1

Views

Author

Karol A. Penson, Jun 05 2002

Keywords

Examples

			a(2) = 3!*LaguerreL(3, 3,-1) = 229, special value of associated Laguerre polynomial.
		

Crossrefs

Cf. A072019.

Programs

  • Mathematica
    a[n_] := Sum[ 1/27*(3^n)^3 * Gamma[n + 1/3*k + 1/3] * Gamma[n + 1/3*k + 2/3] * Gamma[n + 1/3*k + 1] / Gamma[ 4/3 + 1/3*k] / Gamma[5/3 + 1/3*k] / Gamma[2 + 1/3*k] / Exp[1] / k!, {k, 0, Infinity}] (* Robert G. Wilson v, Jun 13 2002 *)

Formula

Representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(exp(-x^(1/3))*BesselI(3, 2*x^(1/6))/(3*exp(1)*x^(7/6))) dx, n >= 1. This representation is unique.

Extensions

a(9) from Robert G. Wilson v, Jun 13 2002
a(10) from Sean A. Irvine, Aug 26 2024

A091748 Generalized Bell numbers B_{6,2}.

Original entry on oeis.org

1, 43, 5083, 1160113, 432168721, 238012552651, 181520958432283, 182989529196234433, 235492729726705299073, 376560458072018837889931, 732162019709408940671604091, 1700645336651586566571229542193
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A072019 ( B_{5, 2}).

Programs

  • Mathematica
    a[n_] := Sum[Product[FactorialPower[k+4*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n)=sum(A091746(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+4*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

A091537 Alternating row sums of array A091534 (generalized Stirling2 array (5,2)).

Original entry on oeis.org

1, 11, 341, 19841, 1683981, 143771891, -15351301839, -27396364105599, -24059921739904039, -21285850978489377989, -20814945866103868804819, -22980130985849165090290239, -28698856680135265507625861339, -40335646598356375740067161474269
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A072019 (row sums of A091534).

Formula

a(n)=sum(((-1)^k)*A091534(n, k), k=2..2*n), n>=1.

A072598 a(n)= 3^(4*n-4)* Sum_{k>=0} ( Gamma(n+k/3+1/3) / Gamma(4/3+k/3) ) * (Gamma(n+k/3+2/3) / Gamma(5/3+k/3) ) * (Gamma(n+k/3+1) / Gamma(2+k/3) ) * Gamma(n+k/3+4/3) / ( Gamma(7/3+k/3) * k! *exp(1)).

Original entry on oeis.org

1, 1961, 22982765, 897960515649, 87104111341922641, 17553971396873140572281, 6522485663882405640795371581, 4101670732571144797304609148820545, 4092893743093429344164150395340192148609, 6162975970715988703282664052430391759867866441
Offset: 1

Views

Author

Karol A. Penson, Jun 23 2002

Keywords

Comments

Gamma in the definition is the standard Capital-Greek-Gamma function.

Crossrefs

Extensions

More terms from Sean A. Irvine, Oct 13 2024
Showing 1-5 of 5 results.