cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A091535 First column (k=2) of array A091534 ((5,2)-Stirling2).

Original entry on oeis.org

1, 20, 1120, 123200, 22422400, 6098892800, 2317579264000, 1172695107584000, 762251819929600000, 618948477782835200000, 613996889960572518400000, 730656299053081296896000000, 1027302756468632303435776000000, 1684776520608556977634672640000000
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The scaled sequence (2/(3n-1)!!!)*a(n) = (3*n-2)!!! = A007559(n), n>=1.

Crossrefs

Third column of array A091752 ((-1, 2)-Stirling2).

Programs

  • Maple
    a := n -> 9^n*GAMMA(n+1/3)*GAMMA(n+2/3)*sqrt(3)/(4*Pi);
    seq(a(n), n=1..16); # Peter Luschny, Sep 17 2014
  • Mathematica
    a[n_] := (3*n-1)!/(2!*3^(n-1)*(n-1)!); Array[a, 15] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = (3*n-1)!/(2!*3^(n-(2-1))*(n-1)!) = ((3*n-1)!/2)/A032031(n-1).
a(n) = A091534(n, 2), n>=1.
E.g.f.: (hypergeom([1/3, 2/3, 1], [], 9*x)-1)/2.
a(n) = 9^n*Gamma(n+1/3)*Gamma(n+2/3)*sqrt(3)/(4*Pi). - Peter Luschny, Sep 17 2014
a(n) ~ (sqrt(3)/2) * (3*n/e)^(2*n). - Amiram Eldar, Sep 01 2025

A091539 Second column (k=3) of array A091534 ((5,2)-Stirling2) divided by 10.

Original entry on oeis.org

1, 104, 16192, 3745280, 1222291840, 537758144000, 307503360102400, 221965373351321600, 197530935371241472000, 212553938009841139712000, 272115940122123843665920000, 408828811133790954169303040000, 712427095375430807967713198080000, 1425431682224708301179257251430400000
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 3^(2*n) * Pochhammer[2/3, n] * (n! - 3 * Pochhammer[1/3, n])/(3!*10); Array[a, 20, 2] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = A091534(n, 3)/10, n >= 2.
a(n) = Product_{j=0..n-1} (3*j + 2)*(Product_{j=0..n-1} (3*(j+1)) - 3*Product_{j=0..n-1} (3*j + 1))/(3!*10). From eq. (12) of the Blasiak et al. reference for r=5, s=2 and k=3.
a(n) = (3^(2*n))*risefac(2/3, n)*(n!-3*risefac(1/3, n))/(3!*10), with risefac(x, n) = Pochhammer(x, n).
a(n) = (fac3(3*n-1)/10)*(fac3(3*n) - 3*fac3(3*n-2))/3!, with fac3(3*n) = A032031(n) = n!*3^n, fac3(3*n-1) = A008544(n) and fac3(3*n-2) = A007559(n) (triple factorials: fac3(n) = A007661(n)).
E.g.f.: (hypergeom([2/3, 1], [], 9*x)-3*hypergeom([1/3, 2/3], [], 9*x)+2)/(3!*10).
a(n) ~ Pi * 3^(2*n) * n^(2*n + 2/3) / (30 * Gamma(2/3) * exp(2*n)). - Amiram Eldar, Aug 30 2025

A091540 Rescaled second column A091539 of array A091534 ((5,2)-Stirling2).

Original entry on oeis.org

1, 13, 184, 3040, 58360, 1283800, 31917760, 886123840, 27192323200, 914387689600, 33446228569600, 1322364153510400, 56203860301388800, 2555756347720576000, 123819357959385088000, 6367367706293321728000
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

A certain difference of two triple factorial sequences.
If offset 0: exponential (also called binomial) convolution of A091541 and A051606.

Crossrefs

Cf. A091541.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3-2*(1-3*x)^(2/3))/(1-3*x)^3 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    Drop[With[{nmax = 50}, CoefficientList[Series[(1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)), {x, 0, nmax}], x]*Range[0, nmax]!],2] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n)= (5*2/fac3(3*n-1))*A091539(n), n>=2, with fac3(3*n-1) := A008544(n) (triple factorials).
E.g.f.: (1-2*x-(1-3*x)^(2/3))/(2*(1-3*x))= (1/2-x+int((1-3*x)^(-1/3), x))/(1-3*x).
E.g.f. with offset 0: (3-2*(1-3*x)^(2/3))/(1-3*x)^3.
a(n)=(fac3(3*n) - 3*fac3(3*n-2))/3! with fac3(3*n) := A032031(n)= n!*3^n and fac3(3*n-2) := A007559(n).
a(n) ~ 3^(n-1) * n! / 2. - Vaclav Kotesovec, Aug 16 2018

A091537 Alternating row sums of array A091534 (generalized Stirling2 array (5,2)).

Original entry on oeis.org

1, 11, 341, 19841, 1683981, 143771891, -15351301839, -27396364105599, -24059921739904039, -21285850978489377989, -20814945866103868804819, -22980130985849165090290239, -28698856680135265507625861339, -40335646598356375740067161474269
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A072019 (row sums of A091534).

Formula

a(n)=sum(((-1)^k)*A091534(n, k), k=2..2*n), n>=1.

A091740 Third column (k=4) sequence of array A091534 ((5,2)-Stirling2).

Original entry on oeis.org

1, 290, 71320, 22097600, 8928102400, 4644244774400, 3046988353024000, 2470747704449024000, 2431736840968314880000, 2859398101389251502080000, 3962371103307529193881600000, 6394280010754055221811609600000, 11892513203530676764397417267200000, 25260371493666997186451230294016000000
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A091539 (second column of array A091534 divided by 10), A007661.

Programs

  • Mathematica
    a[n_] := 3^(2*n) * (6 * Pochhammer[2/3, n] * Pochhammer[1/3, n] - 4 * n! * Pochhammer[2/3, n] + n! * Pochhammer[4/3, n])/4!; Array[a, 20, 2] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = A091534(n, 4), n>=2.
a(n) = (3^(2*n)) * (6*risefac(2/3, n) * risefac(1/3, n) - 4*n!*risefac(2/3, n) + risefac(4/3, n)*n!)/4!, with risefac(x, n) = Pochhammer(x, n).
E.g.f.: (6*hypergeom([2/3, 1/3], [], 9*x) - 4*hypergeom([1, 2/3], [], 9*x) + hypergeom([4/3, 1], [], 9*x) - 3)/4!.
a(n) = (6*fac3(3*n-2)*fac3(3*n-1)-4*fac3(3*n-1)*fac3(3*n)+fac3(3*n)*fac3(3*n+1))/4!, n>=2, with fac3(n) = A007661(n) (triple factorials). Rewritten from eq.12 of the Blasiak et al. reference for r=5, s=2, k=4.

A091746 Generalized Stirling2 array (6,2).

Original entry on oeis.org

1, 30, 12, 1, 2700, 1920, 426, 36, 1, 491400, 478800, 162540, 25344, 1956, 72, 1, 150368400, 181440000, 80451000, 17624880, 2130660, 147840, 5820, 120, 1, 69470200800, 98424849600, 52905560400, 14618016000, 2346624000, 232202880
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2.
Cf. A091544 (first column), A091550 (second column divided by 12).
Cf. A091748 (row sums), A091750 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k/k! Sum[(-1)^p Binomial[k, p] Product[FactorialPower[p + 4*(j-1), 2], {j, 1, n}], {p, 2, k}]; Table[a[n, k], {n, 1, 8}, {k, 2, 2n} ] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+4*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=6, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(4*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A072019 Generalized Bell numbers B_{5,2}.

Original entry on oeis.org

1, 31, 2481, 371881, 89281461, 31274052351, 15020526041221, 9461707887414161, 7560380738419084201, 7466459670646734124671, 8925493084998518977531001, 12696331763378714706289411961, 21186586117648690791837844061341, 40976310644118022811682503135528671, 90905327647146969025291153908894514381, 229256189615621846477632508681520371943201
Offset: 1

Views

Author

Karol A. Penson, Jun 05 2002

Keywords

Comments

a(n), n=1,2... can be calculated as n-th moment of a positive function on a positive half-axis. This function depends on three different hypergeometric functions of type 0F4. In Maple notation: a(n)=int( x^n*( 1/216*BesselK(1/3,2/3*sqrt(x))*(36*sqrt(3)*hypergeom([],[1/3, 4/3, 5/3, 2/3],1/243*x)*GAMMA(2/3)+8*3^(1/3)*x^(1/3)*Pi*hypergeom([],[2, 4/3, 5/3, 2/3],1/243*x)+3*3^(1/6)*GAMMA(2/3)^2*x^(2/3)*hypergeom([],[2, 7/3, 4/3, 5/3],1/243*x))/Pi/GAMMA(2/3)/exp(1)/x^(1/2) ), x=0..infinity), n=1,2....
a(2)=2!*LaguerreL(2,3,-1)=31, special value of associated Laguerre polynomial.

Crossrefs

Cf. A072020.

Programs

  • Mathematica
    a[n_] := Sum[ 1/9*(3^n)^2 * Gamma[n + 1/3*k + 1/3] * Gamma[n + 1/3*k + 2/3] / Gamma[4/3 + 1/3*k ] / Gamma[5/3 + 1/3*k]/k!/Exp[1], {k, 0, Infinity}]
    (* Second program: *)
    a[n_] := Sum[Product[FactorialPower[k+3*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) = Sum_{k=2..2*n} A091534(n, k) = (Sum_{k>=2} (1/k!)*Product_{j=1..n} fallfac(k+3*(j-1), 2))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=5, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
Sum of an infinite series: a(n) = Sum_{k>=0} (1/9 * (3^n)^2 * Gamma(n+k/3+1/3) * Gamma(n+k/3+2/3) / (Gamma(4/3+k/3) * Gamma(5/3+k/3) * k! * exp(1))).

A091747 Generalized Stirling2 array (7,2).

Original entry on oeis.org

1, 42, 14, 1, 5544, 3192, 588, 42, 1, 1507968, 1165248, 321552, 41496, 2688, 84, 1, 696681216, 655966080, 232606080, 41497344, 4143552, 240240, 7980, 140, 1, 489070213632, 533531142144, 226306918656, 50249808000, 6575950080
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2, A091746 (6, 2)-Stirling2.
Cf. A091545 (first column).
Cf. A091749 (row sums), A091751 (alternating row sums).

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+5*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=7, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(5*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=7, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A092077 Generalized Stirling2 array (8,2).

Original entry on oeis.org

1, 56, 16, 1, 10192, 4928, 776, 48, 1, 3872960, 2477440, 575680, 63360, 3536, 96, 1, 2517424000, 1940556800, 572868800, 86163840, 7326880, 364800, 10480, 160, 1, 2497284608000, 2210343116800, 773352966400, 143430604800, 15836206400, 1099612800, 49056960, 1398400, 24520, 240, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

Crossrefs

The generalized (k, 2)-Stirling2 arrays are, for k=2, ..., 7: A078739, A078740, A090438, A091534, A091746 and A091747.
Cf. A091546, A091552 (first, resp. second column). A091757 (row sums). A091758 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := ((-1)^k/k!) Sum[(-1)^p Binomial[k, p] Product[FactorialPower[ p + 6(j-1), 2], {j, 1, n}], {p, 2, k}];
    Table[a[n, k], {n, 1, 6}, {k, 2, 2n}] // Flatten (* Jean-François Alcover, Feb 28 2020 *)

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+6*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=8, s=2.
Recursion: a(n, k) = sum(binomial(2, p)*fallfac(6*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A091544 First column sequence of array A091746 ((6,2)-Stirling2).

Original entry on oeis.org

1, 30, 2700, 491400, 150368400, 69470200800, 45155630520000, 39285398552400000, 44078217175792800000, 61973973349164676800000, 106719182107261573449600000, 220908706962031457040672000000, 541226332056977069749646400000000, 1548989762347068373623487996800000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also fifth column (m=4) sequence of triangle A091543.

Crossrefs

Cf. A091535 (third column of A091543, first column of array A091534), A000407, A007696, A091746.

Programs

  • Mathematica
    a[n_] := 2^(4*n-1) * Pochhammer[1/4, n] * Pochhammer[1/2, n]; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = 2^(n-1)*Product_{j=0..n-1}((2*j+1)*(4*j+1)), n>=1. From eq.12 of the Blasiak et al. reference with r=6, s=2, k=1.
a(n) = (2^(4*n-1))*risefac(1/4, n)*risefac(1/2, n), n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac4(4*n-3)*fac4(4*n-2)/2, n>=1, with fac4(4*n-3) = A007696(n) and fac4(4*n-2)/2 = A000407(n+1) (quartic- or 4-factorials).
E.g.f.: (hypergeom([1/4, 1/2], [], 16*x)-1)/2.
a(n) = A091746(n, 2), n>=1.
a(n) ~ sqrt(Pi) * 2^(4*n) * n^(2*n-1/4) / (Gamma(1/4) * exp(2*n)). - Amiram Eldar, Aug 30 2025
Showing 1-10 of 10 results.