cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072068 Number of integer solutions to the equation 2x^2+y^2+8z^2=m for an odd number m=2n-1.

Original entry on oeis.org

2, 4, 0, 0, 10, 12, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 16, 24, 0, 0, 32, 12, 0, 0, 18, 24, 0, 0, 16, 36, 0, 0, 32, 12, 0, 0, 16, 28, 0, 0, 34, 36, 0, 0, 48, 24, 0, 0, 16, 36, 0, 0, 32, 36, 0, 0, 32, 24, 0, 0, 26, 24, 0, 0
Offset: 1

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and a(n) = 2*A072069(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.
G.f. = 2*x + 4*x^2 + 10*x^5 + 12*x^6 + 16*x^9 + 12*x^10 + 10*x^13 + 16*x^14 + 16*x^17 + ...
G.f. = 2*q + 4*q^3 + 10*q^9 + 12*q^11 + 16*q^17 + 12*q^19 + 10*q^25 + 16*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    maxN=128; soln1=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/8]]; Do[n=2x^2+y^2+8z^2; If[OddQ[n]&&nA072068 = CoefficientList[s, x] // Rest (* Jean-François Alcover, Feb 16 2015, after Michael Somos *)
  • PARI
    {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^5 * eta(x^16 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

Formula

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^7 / (eta(q)^2 * eta(q^4)^5 * eta(q^16)^2) in powers of q. - Michael Somos, Feb 19 2015