A072079 Sum of 3-smooth divisors of n.
1, 3, 4, 7, 1, 12, 1, 15, 13, 3, 1, 28, 1, 3, 4, 31, 1, 39, 1, 7, 4, 3, 1, 60, 1, 3, 40, 7, 1, 12, 1, 63, 4, 3, 1, 91, 1, 3, 4, 15, 1, 12, 1, 7, 13, 3, 1, 124, 1, 3, 4, 7, 1, 120, 1, 15, 4, 3, 1, 28, 1, 3, 13, 127, 1, 12, 1, 7, 4, 3, 1, 195, 1, 3, 4, 7, 1, 12, 1, 31, 121
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[p > 3, 1, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
-
PARI
a(n) = (2^(valuation(n, 2)+1)-1)*(3^(valuation(n, 3)+1)-1)/2; \\ Amiram Eldar, Dec 01 2022
Formula
Multiplicative with a(2^e) = 2^(e+1)-1, a(3^e) = (3^(e+1)-1)/2, a(p^e) = 1, p>3. Christian G. Bower, May 20 2005
From Amiram Eldar, Dec 01 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3)).
Sum_{k=1..n} a(k) ~ c_1 * (n * log(n)^2 + c_2 * n * log(n) + c_3 * n), where c_1 = 1/(2*log(2)*log(3)) = 0.656598..., c_2 = (2*gamma - 2 + log(6)) = 0.9461907..., and c_3 = (log(6)^2 + log(2)*log(3))/6 - (log(6)-2)*(1-gamma) - 2*gamma_1 = 0.895656..., gamma is Euler's constant (A001620), and gamma_1 is the 1st Stieltjes constant (A082633). (End)