cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A355579 Numbers k such that A072079(k)/k sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 72, 144, 288, 432, 864, 1728, 2592, 3456, 5184, 10368, 20736, 31104, 41472, 62208, 124416, 248832, 373248, 746496, 1492992, 2239488, 2985984, 4478976, 8957952, 17915904, 26873856, 53747712, 107495424, 161243136, 214990848, 322486272
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Comments

Numbers m such that A072079(m)/m > A072079(k)/k for all k < m.
All the terms are 3-smooth numbers (A003586).
Equivalently, 3-smooth numbers k such that A000203(k)/k sets a new record.
Analogous to superabundant numbers (A004394) with 3-smooth numbers only.

Examples

			The numbers of 3-smooth divisors of the first 6 positive integers are 1, 3, 4, 7, 1 and 12. The corresponding values of A072079(k)/k are 1, 3/2, 4/3, 7/4, 1/5 and 2. The record values, 1, 3/2, 7/4 and 2, occur at 1, 2, 4 and 6, the first 4 terms of this sequence.
		

Crossrefs

Subsequence of A003586 and A355578.

Programs

  • Mathematica
    s[n_] := Module[{e = IntegerExponent[n, {2, 3}], p}, p = {2, 3}^e; If[Times @@ p == n, (2^(e[[1]] + 1) - 1)*(3^(e[[2]] + 1) - 1)/(2*n), 0]]; sm = 0; seq = {}; Do[sn = s[n]; If[sn > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^6}]; seq
  • PARI
    lista(nmax) = {my(list = List(), rmax = 0, e2, e3, r); for(n = 1, nmax, e2 = valuation(n, 2); e3 = valuation(n, 3); r = if(2^e2 * 3^e3 == n, (2^(e2 + 1) - 1)*(3^(e3 + 1) - 1)/(2*n), 0); if(r > rmax, rmax = r;  listput(list, n))); Vec(list)};
    
  • Python
    from fractions import Fraction
    from sympy import multiplicity as v
    from itertools import count, takewhile
    def f(n): return Fraction((2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1)//2, n)
    def smooth3(lim):
        pows2 = list(takewhile(lambda x: x record: record = v; records.append(argv)
        return records
    print(aupto(10**9)) # Michael S. Branicky, Jul 08 2022

Formula

Limit_{n->oo} A072079(a(n))/a(n) = lim_{n->oo} A000203(a(n))/a(n) = 3.

A072078 Number of 3-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 1, 4, 1, 4, 3, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 3, 2, 2, 1, 8, 1, 2, 4, 3, 1, 4, 1, 6, 2, 2, 1, 9, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 10, 1, 2, 2, 3, 1, 8, 1, 4, 2, 2, 1, 6, 1, 2, 3, 7, 1, 4, 1, 3, 2, 2, 1, 12, 1, 2, 2, 3, 1, 4, 1, 5, 5, 2, 1, 6, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2002

Keywords

Crossrefs

Programs

  • Magma
    [(Valuation(n,2)+1)*(Valuation(n,3)+1): n in [1..120]]; // Vincenzo Librandi, Mar 24 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[6*#]*DivisorSigma[0, n/#] &]; Array[a, 100] (* or *) a[n_] := ((1+IntegerExponent[n, 2])*(1+IntegerExponent[n, 3])); Array[a, 100] (* Amiram Eldar, Dec 03 2018 from the pari codes *)
  • PARI
    a(n)=sumdiv(n,d,moebius(6*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
    
  • PARI
    A072078(n) = ((1+valuation(n,2))*(1+valuation(n,3))); \\ Antti Karttunen, Dec 03 2018
    

Formula

a(n) = A000005(A065331(n)).
a(n) = (A007814(n) + 1)*(A007949(n) + 1).
1/Product_{k>0} (1 - x^k + x^(2*k))^a(k) is g.f. for A000041(). - Vladeta Jovovic, Jun 07 2004
From Christian G. Bower, May 20 2005: (Start)
Multiplicative with a(2^e) = a(3^e) = e+1, a(p^e) = 1, p>3.
Dirichlet g.f.: 1/((1-1/2^s)*(1-1/3^s))^2 * Product{p prime > 3}(1/(1-1/p^s)). [corrected by Vaclav Kotesovec, Nov 20 2021] (End)
a(n) = Sum_{d divides n} mu(6d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/((1-1/2^s)*(1-1/3^s)). - Ralf Stephan, Mar 24 2015; corrected by Vaclav Kotesovec, Nov 20 2021
Sum_{k=1..n} a(k) ~ 3*n. - Vaclav Kotesovec, Nov 20 2021

Extensions

More terms from Benoit Cloitre, Jun 21 2007

A385006 The sum of the biquadratefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 15, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 15, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A365682 and A366992 at n = 32.
The number of these divisors is A252505(n), and the largest of them is A058035(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), A385005 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^Min[e+1, 4] - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^min(e+1, 4) - 1)/(p - 1));}

Formula

Multiplicative with a(p^e) = (p^min(e+1, 4) - 1)/(p - 1).
In general, the sum of the k-free (numbers that are not divisible by a k-th power larger than 1) divisors of n is multiplicative with a(p^e) = (p^min(e+1, k) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(s-1) /zeta(4*s-4).
In general, the sum of the k-free divisors of n has Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(k*s-k).
Sum_{k=1..n} a(k) ~ (15/(2*Pi^2)) * n^2.
In general, the sum of the k-free divisors of n has an average order (Pi^2/(12*zeta(k))) * n^2.

A385046 The sum of the unitary divisors of n that are 3-smooth numbers (A003586).

Original entry on oeis.org

1, 3, 4, 5, 1, 12, 1, 9, 10, 3, 1, 20, 1, 3, 4, 17, 1, 30, 1, 5, 4, 3, 1, 36, 1, 3, 28, 5, 1, 12, 1, 33, 4, 3, 1, 50, 1, 3, 4, 9, 1, 12, 1, 5, 10, 3, 1, 68, 1, 3, 4, 5, 1, 84, 1, 9, 4, 3, 1, 20, 1, 3, 10, 65, 1, 12, 1, 5, 4, 3, 1, 90, 1, 3, 4, 5, 1, 12, 1, 17
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A382488(n), and the largest of them is A065331(n).

Crossrefs

The unitary analog of A072079.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), this sequence (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[n_, p_] := If[Divisible[n, p], p^IntegerExponent[n, p] + 1, 1]; a[n_] := f[n, 2]*f[n, 3]; Array[a, 100]
  • PARI
    a(n) = if(n%2, 1, 2^valuation(n, 2)+1) * if(!(n%3), 3^valuation(n, 3)+1, 1);

Formula

Multiplicative with a(p^e) = p^e + 1 if p <= 3, and 1 if p >= 5.
a(n) = A034448(n)/A385045(n).
a(n) <= A034448(n), with equality if and only if n 3-smooth.
a(n) <= A072079(n).
Dirichlet g.f.: zeta(s) * ((1-1/2^(2*s-1))/(1-1/2^(s-1))) * ((1-1/3^(2*s-1))/(1-1/3^(s-1))).
Sum_{k=1..n} a(k) ~ (n/(6*log(2)*log(3))) * (log(n)^2 + c1*log(n) + c2), where c1 = 2*gamma - 2 + 7*log(2) + 5*log(3) - 2*log(6) = 5.916004..., c2 = 2 - 5*log(2) - 11*log(2)^2/6 - 3*log(3) - 5*log(3)^2/6 + 15*log(2)*log(3)/2 + (5*log(2) + 3*log(3) - 2)*gamma - 2*gamma_1 = 1.957142..., gamma is Euler's constant (A001620), and gamma_1 is the 1st Stieltjes constant (A082633).

A385137 The sum of divisors d of n such that n/d is a 3-smooth number (A003586).

Original entry on oeis.org

1, 3, 4, 7, 5, 12, 7, 15, 13, 15, 11, 28, 13, 21, 20, 31, 17, 39, 19, 35, 28, 33, 23, 60, 25, 39, 40, 49, 29, 60, 31, 63, 44, 51, 35, 91, 37, 57, 52, 75, 41, 84, 43, 77, 65, 69, 47, 124, 49, 75, 68, 91, 53, 120, 55, 105, 76, 87, 59, 140, 61, 93, 91, 127, 65, 132
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), this sequence (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p < 5, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p < 5, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385138(n).
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 3, and p^e if p >= 5.
In general, the sum of divisors d of n such that n/d is q-smooth (not divisible by a prime larger than q) is multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= q, and p^e if p > q.
Dirichlet g.f.: zeta(s-1) / ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-smooth has Dirichlet g.f.: zeta(s-1) / Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (3/4)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-smooth has an average order c * n^2 / 2, where c = A072044(k-1)/A072045(k-1) for k >= 2.

A355584 a(n) is the sum of the 5-smooth divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 1, 28, 1, 3, 24, 31, 1, 39, 1, 42, 4, 3, 1, 60, 31, 3, 40, 7, 1, 72, 1, 63, 4, 3, 6, 91, 1, 3, 4, 90, 1, 12, 1, 7, 78, 3, 1, 124, 1, 93, 4, 7, 1, 120, 6, 15, 4, 3, 1, 168, 1, 3, 13, 127, 6, 12, 1, 7, 4, 18, 1, 195, 1, 3, 124, 7
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Sum of the p-smooth divisors of n: A038712 (2), A072079 (3), this sequence (5).

Programs

  • Mathematica
    a[n_] := (Times @@ ({2, 3, 5}^(IntegerExponent[n, {2, 3, 5}] + 1) - 1))/8; Array[a, 100]
  • PARI
    a(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
    
  • Python
    from sympy import multiplicity as v
    def a(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1) * (5**(v(5, n)+1)-1) // 8
    print([a(n) for n in range(1, 77)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 5, and 1 otherwise.
a(n) = (2^(A007814(n)+1)-1)*(3^(A007949(n)+1)-1)*(5^(A112765(n)+1)-1)/8.
a(n) = A000203(A355582(n)).
a(n) <= A000203(n), with equality if and only if n is in A051037.
Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3))*(5^s/(5^s-5)). - Amiram Eldar, Dec 25 2022

A385005 The sum of the cubefull divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 121, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 109, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

The sum of the terms in A036966 that divide n.
The number of these divisors is A190867(n), and the largest of them is A360540(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), this sequence (cubefull), A385006 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p - If[e == 1, 0, p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^(e+1)-1)/(p-1) - p - if(e == 1, 0, p^2));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = ((p^(e+1)-1) / (p-1)) - p - p^2 if e >= 3.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - p^(s-1) + 1/p^(3*s-3)).

A355578 Numbers whose sum of 3-smooth divisors sets a new record.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 108, 144, 192, 216, 288, 324, 384, 432, 576, 648, 768, 864, 972, 1152, 1296, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4608, 5184, 5832, 6912, 7776, 8748, 9216, 10368, 11664, 13824, 15552, 17496
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Comments

Numbers m such that A072079(m) > A072079(k) for all k < m.
All the terms are 3-smooth numbers (A003586).
Equivalently, 3-smooth numbers k such that A000203(k) sets a new record.
Analogous to highly abundant numbers (A002093) with 3-smooth numbers only.

Examples

			The numbers of 3-smooth divisors of the first 6 positive integers are 1, 3, 4, 7, 1 and 12. The record values, 1, 3, 4 and 12, occur at 1, 2, 3, 4 and 6, the first 5 terms of this sequence.
		

Crossrefs

Subsequence of A003586.
A355579 is a subsequence.

Programs

  • Mathematica
    s[n_] := Module[{e = IntegerExponent[n, {2, 3}], p}, p = {2, 3}^e; If[Times @@ p == n, (2^(e[[1]] + 1) - 1)*(3^(e[[2]] + 1) - 1)/2, 0]]; sm = 0; seq = {}; Do[sn = s[n]; If[sn > sm, sm = sn; AppendTo[seq, n]], {n, 1, 18000}]; seq
  • PARI
    lista(nmax) = {my(list = List(), smax = 0, e2, e3, s); for(n = 1, nmax, e2 = valuation(n, 2); e3 = valuation(n, 3); s = if(2^e2 * 3^e3 == n, (2^(e2 + 1) - 1)*(3^(e3 + 1) - 1)/2, 0); if(s > smax, smax = s;  listput(list, n))); Vec(list)};
    
  • Python
    from sympy import multiplicity as v
    from itertools import count, takewhile
    def f(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1)//2
    def smooth3(lim):
        pows2 = list(takewhile(lambda x: x record: record = v; records.append(argv)
        return records
    print(aupto(10**5)) # Michael S. Branicky, Jul 08 2022

A382314 G.f. satisfies A(x) = 1/(1-x) + 2*x*A(x^2) + 3*x^2*A(x^3).

Original entry on oeis.org

1, 3, 4, 7, 1, 18, 1, 15, 13, 3, 1, 58, 1, 3, 4, 31, 1, 81, 1, 7, 4, 3, 1, 162, 1, 3, 40, 7, 1, 18, 1, 63, 4, 3, 1, 337, 1, 3, 4, 15, 1, 18, 1, 7, 13, 3, 1, 418, 1, 3, 4, 7, 1, 324, 1, 15, 4, 3, 1, 58, 1, 3, 13, 127, 1, 18, 1, 7, 4, 3, 1, 1161, 1, 3, 4, 7, 1, 18, 1, 31, 121, 3, 1, 58, 1, 3, 4, 15, 1, 81, 1, 7, 4, 3, 1, 1026
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2025

Keywords

Comments

Logarithmic derivative of A382126.

Examples

			G.f.: A(x) = 1 + 3*x + 4*x^2 + 7*x^3 + x^4 + 18*x^5 + x^6 + 15*x^7 + 13*x^8 + 3*x^9 + x^10 + 58*x^11 + x^12 + 3*x^13 + 4*x^14 + 31*x^15 + ...
where A(x) = 1/(1-x) + 2*x*A(x^2) + 3*x^2*A(x^3).
RELATED SERIES.
The logarithm of the g.f. B(x) for A382126 yields the series
log(B(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + x^5/5 + 18*x^6/6 + x^7/7 + 15*x^8/8 + 13*x^9/9 + 3*x^10/10 + x^11/11 + 58*x^12/12 + ... + a(n-1)*x^n/n + ...
where B(x) = B(x^2)*B(x^3)/(1-x) begins
B(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 11*x^6 + 13*x^7 + 20*x^8 + 26*x^9 + 36*x^10 + 44*x^11 + 66*x^12 + ... + A382126(n)*x^n + ...
so that A(x) = B'(x)/B(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x +x*O(x^n)); for(i=1,#binary(n), A = 1/(1-x) + 2*x*subst(A,x,x^2) + 3*x^2*subst(A,x,x^3) + x*O(x^n)  ); polcoef(A,n)}
    for(n=0,100,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1/(1-x) + 2*x*A(x^2) + 3*x^2*A(x^3).
(2) A(x) = (1-x)^2*(1+2*x)*(1+2*x+3*x^2)/((1-x)*(1-x^2)*(1-x^3)) + 4*x^3*A(x^4) + 12*x^5*A(x^6) + 9*x^8*A(x^9).
(3) A(x) = (1/x)*Sum_{n>=0} Sum_{k=0..n} binomial(n,k) * 2^(n-k)*3^k * x^(2^(n-k)*3^k) / (1 - x^(2^(n-k)*3^k)).
(4) A(x) = (1/x)*Sum_{n>=1} B(n) * A003586(n) * x^A003586(n)/(1 - x^A003586(n)) where B(n) = binomial(F2(n)+F3(n),F3(n)), with F2(n) = A007814(A003586(n)) and F3(n) = A007949(A003586(n)).
(5) A(x) = B'(x)/B(x) where B(x) = B(x^2)*B(x^3)/(1-x) is the g.f. of A382126.
Showing 1-9 of 9 results.