cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002410 Nearest integer to imaginary part of n-th zero of Riemann zeta function.

Original entry on oeis.org

14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99, 101, 104, 105, 107, 111, 112, 114, 116, 119, 121, 123, 124, 128, 130, 131, 133, 135, 138, 140, 141, 143, 146, 147, 150, 151, 153, 156, 158, 159, 161
Offset: 1

Views

Author

Keywords

Comments

"All these zeros of the form s + it have real part s = 1/2 and are simple. Thus the Riemann hypothesis is true at least for t < 3330657430697." - Wedeniwski
From Daniel Forgues, Jul 24 2009: (Start)
All nontrivial zeros on the critical line, of the form 1/2 + i*t, have an associated conjugate nontrivial zero of the form 1/2 - i*t.
Any nontrivial zeros off the critical line, if ever found, would come in pairs (1/2 +- delta) + i*t, 0 < delta < 1/2. Each of these pairs, again if ever found, would then have their associated conjugate pair (1/2 +- delta) - i*t, 0 < delta < 1/2. (End)
The sequence is not strictly increasing. - Joerg Arndt, Jan 17 2015
The fraction of numbers n such that a(n) = a(n-1) has density 1. There are only finitely many numbers n with a(n) > a(n-1) + 1, see A208436. - Charles R Greathouse IV, Mar 07 2018
Conjecture: Noninteger rationals of the form m/2^bigomega(m) that can be used to approximate this sequence, i.e. a(n) ~~ 2*Pi*A374074(n)/2^bigomega(A374074(n)) - n/2 +- (...), where '~~' means 'close to'. - Friedjof Tellkamp, Jul 04 2024

Examples

			The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453).
		

References

  • Gregory Benford, Gravity's whispers, Futures Column, Nature, 446 (Jul 15 2010), p. 406. [Gravity waves are detected on Earth that turn out to contain a list of the zeros of the Riemann zeta function, essentially this sequence]
  • E. Bombieri, "The Riemann Hypothesis" in 'The Millennium Prize Problems' Chap. 7 pp. 107-128 Eds: J. Carlson, A. Jaffe & A. Wiles, Amer. Math. Soc. Providence RI 2006.
  • P. Borwein et al., The Riemann Hypothesis, Can. Math. Soc. (CMS) Ottawa ON 2007.
  • S. Chowla, Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Application Series Vol. 4, Taylor & Francis NY 1965.
  • J. Derbyshire, Prime Obsession, Penguin Books 2004.
  • K. Devlin, The Millennium Problems, Chapter 1 (pp. 19-62) Basic Books NY 2002.
  • M. du Sautoy, The Music of the Primes, Fourth Estate/HarperCollins NY 2003.
  • H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
  • A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover NY 2003.
  • D. S. Jandu, Riemann Hypothesis and Prime Number Theorem, Infinite Bandwidth Publishing, N. Hollywood CA 2006.
  • A. A. Karatsuba & S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin 1992.
  • G. Lachaud, "L'hypothèse de Riemann" in La Recherche No.346 October 2001 pp. 24-30 (or Les Dossiers de La Recherche No. Aug 20 2005 pp. 26-35) Paris.
  • M. L. Lapidus, In Search of the Riemann Zeros, Amer. Math. Soc. (AMS) Providence RI 2008.
  • P. Meier & J. Steuding, "L'hypothèse de Riemann" in 'Pour la Science' (French Edition of 'Scientific American') pp 22-9, March 2009, Issue No. 377, Paris.
  • P. Odifreddi, The Mathematical Century, Chapter 5.2, p. 168, Princeton Univ. Press NJ 2004.
  • S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, UK 1995.
  • D. N. Rockmore, Stalking the Riemann Hypothesis, Jonathan Cape UK 2005.
  • K. Sabbagh, The Riemann Hypothesis, Farrar Straus Giroux NY 2003.
  • K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books London 2003.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press NY 1986.

Crossrefs

Cf. A013629 (floor), A092783 (ceiling), A057641, A057640, A058209, A058210, A120401, A122526, A072080, A124288 ("unstable" zeta zeros), A124289 ("unstable twins"), A236212, A177885, A374074 (approximation).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Charles R Greathouse IV, Sep 14 2012, corrected by Hal M. Switkay, Oct 04 2021
a(n) ~ 2*Pi*(n - 11/8)/ProductLog((n - 11/8)/exp(1)). This is the asymptotic by Guilherme França and André LeClair. - Mats Granvik, Mar 10 2015; corrected May 16 2016

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

A082668 (10^n)-th zero of the Riemann zeta function rounded to the nearest integer.

Original entry on oeis.org

14, 50, 237, 1419, 9878, 74921, 600270, 4992381, 42653550, 371870204, 3293531632, 29538618432, 267653395649, 2445999556030, 22514484222486, 208514052006405, 1941393531395155, 18159447720050928
Offset: 0

Views

Author

Robert G. Wilson v, May 18 2003

Keywords

Comments

a(21) = 144176897509546973538, a(22) = 1370919909931995308227 and a(23) = 13066434408793494969602.

References

  • John Derbyshire, Prime Obsession, Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Joseph Henry Press, Washington, D.C., 2003.
  • Karl Sabbagh, The Riemann Hypothesis, The Greatest Unsolved Problem In Mathematics, Farrar, Straus and Giroux, NY, 2002.

Crossrefs

Programs

  • Mathematica
    Table[Round[N[Im[ZetaZero[10^i]], 17]], {i, 0, 7}] (* David Baugh, Nov 03 2011 *)

Formula

a(n) = A002410(10^n). - Ryan Propper, Feb 12 2008

Extensions

600270 (taken from Odlyzko's tables) from Ryan Propper, Feb 12 2008
a(2) corrected and a(7) through a(17) found by David Baugh using Mathematica and a theorem of (Littlewood, Turing, Lehman, Brent), a(22) corrected and a(23) added based on tables from Odlyzko, Nov 03 2011

A259506 a(n) = floor((LogGamma(n/2+1) - n*log(Pi)/2)/Pi).

Original entry on oeis.org

0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 08 2015

Keywords

Comments

Let f(n) = number of (nontrivial) zeros of zeta(z) with 0 < Im(z) < n; then f(n) ~ a(n).
The sequence gives exactly the values of A072080(n) for n = 2, 3, and 5.

Crossrefs

Programs

  • Mathematica
    Table[Floor[(LogGamma[n/2 + 1] - n*Log[Pi]/2)/Pi], {n, 0, 74}]
  • PARI
    a(n)=floor((lngamma(n/2+1)-n*log(Pi)/2)/Pi)

Formula

a(n) = floor((LogGamma(n/2+1) - n*log(Pi)/2)/Pi).
Showing 1-3 of 3 results.