A072165 Values of Moebius function of the products of two (not necessarily distinct) primes (semiprimes or 2-almost primes, A001358).
0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1
Offset: 1
Examples
For n = 2995, A001358(2995) = 11449 = 107^2, and as Moebius mu is zero for squares, we have a(2995) = 0. - _Antti Karttunen_, Oct 04 2017
Links
- Antti Karttunen, Table of n, a(n) for n = 1..3001
- Kimberly Schneider, Moebius function.
- Index entries for characteristic functions
Programs
-
Maple
semiprimes := proc(d_n) local a,i; a := [ ]; for i from 1 to d_n do if((tau(i) = 3) or ((mobius(i) <> 0) and (tau(i) = 4))) then a := [ op(a), mobius(i) ]; fi; od: RETURN(a); end;
Formula
Extensions
More terms from Antti Karttunen, Oct 04 2017
Comments