A072173 a(n) = (2*n+1)*239^(2*n+1).
239, 40955757, 3899056325995, 311805194956024553, 22899374409963958061031, 1598709646931895970271741029, 107923510786468980575690686466147, 7113114068808339968612339655730133985, 460482613887654678993386180604955781138143, 29397724727626925615108413436728112018437968221
Offset: 0
References
- H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73
Links
- Colin Barker, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (114242,-3262808641).
Crossrefs
Cf. A072172.
Cf. A157332. - Jaume Oliver Lafont, Mar 03 2009
Programs
-
GAP
List([0..10], n-> (2*n+1)*239^(2*n+1)); # G. C. Greubel, Aug 26 2019
-
Magma
[(2*n+1)*239^(2*n+1): n in [0..10]]; // G. C. Greubel, Aug 26 2019
-
Maple
seq((2*n+1)*239^(2*n+1), n = 0..10); # G. C. Greubel, Aug 26 2019
-
Mathematica
Table[(2*n+1)*239^(2*n+1), {n,0,10}] (* G. C. Greubel, Aug 26 2019 *)
-
PARI
Vec(239*(1+57121*x)/(1-57121*x)^2 + O(x^10)) \\ Colin Barker, Aug 25 2016
-
PARI
vector(10, n, (2*n-1)*239^(2*n-1)) \\ G. C. Greubel, Aug 26 2019
-
Sage
[(2*n+1)*239^(2*n+1) for n in (0..10)] # G. C. Greubel, Aug 26 2019
Formula
From Colin Barker, Aug 25 2016: (Start)
a(n) = 114242*a(n-1) - 3262808641*a(n-2) for n>1.
G.f.: 239*(1+57121*x) / (1-57121*x)^2. (End)
E.g.f.: m*(1+2*m^2*x)*exp(m^2*x), where m=239. - G. C. Greubel, Aug 26 2019
Comments