cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072176 Unimodal analog of Fibonacci numbers: a(n+1) = Sum_{k=0..floor(n/2)} A071922(n-k,k).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 16, 30, 56, 106, 201, 382, 727, 1384, 2636, 5021, 9565, 18222, 34715, 66137, 126001, 240052, 457338, 871304, 1659978, 3162533, 6025150, 11478911, 21869232, 41664520, 79377833, 151227961, 288114394, 548905795
Offset: 1

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 30 2002

Keywords

Comments

Based on the observation that F_{n+1} = Sum_{k} binomial (n-k,k). In both cases the sum is extended to 0<=2k<=n.

Crossrefs

Programs

  • GAP
    a:=[1,1,2,3,5];; for n in [6..40] do a[n]:=2*a[n-1]+a[n-2] -2*a[n-3]-a[n-4]+a[n-5]; od; a; # G. C. Greubel, Aug 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)) )); // G. C. Greubel, Aug 26 2019
    
  • Maple
    seq(coeff(series(x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Aug 26 2019
  • Mathematica
    Rest@CoefficientList[ Series[x(1-x-x^2)/((1-x)(1-x-2x^2+x^4)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2,1,-2,-1,1}, {1,1,2,3,5}, 40] (* Harvey P. Dale, Jun 23 2011 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4))) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    def A072176_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)) ).list()
    a=A072176_list(40); a[1:] # G. C. Greubel, Aug 26 2019
    

Formula

G.f.: x*(1-x-x^2)/((1-x)*(1-x-2*x^2+x^4)).
a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=5, a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Jun 23 2011