cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072183 Sequence arising from factorization of the Fibonacci numbers.

Original entry on oeis.org

1, 1, 4, 3, 11, 2, 29, 7, 19, 5, 199, 6, 521, 13, 31, 47, 3571, 17, 9349, 41, 211, 89, 64079, 46, 15251, 233, 5779, 281, 1149851, 61, 3010349, 2207, 9901, 1597, 64681, 321, 54018521, 4181, 67861, 2161, 370248451, 421, 969323029, 13201, 97921
Offset: 1

Views

Author

Miklos Kristof, Jul 01 2002

Keywords

Comments

For even n, F(n) = Product_{d|n}a(d) and for odd n, F(n) = Product_{d|n}a(2d).
For odd noncomposite n, a(n)=L(n), where L(n) is the n-th Lucas number. a(2)=1. Also a(2p)=F(p) for odd primes.
For even n, F(n) = Product_{d|n}a(d). So for even n, log(F(n)) = Sum_{d|n}log(a(d)). For odd n, L(n) = Product_{d|n}a(d). So for odd n, log(L(n)) = Sum_{d|n}log(a(d)). So we can use the Moebius transformation for getting a(n).

Examples

			F(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 1*1*4*3*2*6 = 144 for even n, F(15) = a(2)*a(6)*a(10)*a(30) = 1*2*5*61 = 610 for odd n.
For even n: log(a(12)) = mu(6)*log(F(2)) + mu(3)*log(F(4)) + mu(2)*log(F(6)) + mu(1)*log(F(12)) + mu(12)*log(L(1)) + mu(4)*log(L(3)) = 0 - log(3) - log(8) + log(144) + 0 + 0 = log(144/3/8) = log(6): a(12)=6.
For odd n: log(a(15)) = mu(15)*log(L(1)) + mu(5)*log(L(3)) + mu(3)*log(L(5)) + mu(1)*log(L(15)) = 0 - log(4) - log(11) + log(1364) = log((1364/4)/11) = log(31) so a(15) = 31.
		

Programs

  • Mathematica
    F[n_] := Fibonacci[n]; L[n_] := F[n + 1] + F[n - 1]; a[2] = 1; a[n_] := a[n] = If[ PrimeQ[n] || n == 1, L[n], If[ PrimeQ[n/2] && OddQ[n/2], F[n/2], If[ EvenQ[n], F[n]/b[n], a[2n] = F[n]/b[n]; F[2n]/c[2n]]]]; b[n_] := (d = Delete[ Divisors[n], -1]; p = 1; k = 1; l = Length[d]; While[k < l + 1, p = p*If[EvenQ[n], a[ d[[k]]], a[ 2d[[k]]]]; k++ ]; p); c[n_] := (d = Delete[Divisors[n], -2]; p = 1; k = 1; l = Length[d]; While[k < l + 1, p = p*a[ d[[k]]]; k++ ]; p); Table[ a[n], {n, 1, 50}]

Formula

Let h = (1+sqrt(5))/2, K(n, x) = n-th cyclotomic polynomial, so that x^n-1 = Product_{d|n}K(d, x); f(d) is the order of K(d, x). a(n) = (h-1)^f(n)*K(n, h+1).
For odd n: log(a(n)) = Sum_{d|n}mu(n/d)*log(L(d)). For even n: log(a(n)) = Sum_{d|n, d even}mu(n/d)*log(F(d)) + Sum_{d|n, d odd}mu(n/d)*log(L(d)).

Extensions

Edited and extended by Robert G. Wilson v and Vladeta Jovovic, Jul 02 2002