A072183 Sequence arising from factorization of the Fibonacci numbers.
1, 1, 4, 3, 11, 2, 29, 7, 19, 5, 199, 6, 521, 13, 31, 47, 3571, 17, 9349, 41, 211, 89, 64079, 46, 15251, 233, 5779, 281, 1149851, 61, 3010349, 2207, 9901, 1597, 64681, 321, 54018521, 4181, 67861, 2161, 370248451, 421, 969323029, 13201, 97921
Offset: 1
Keywords
Examples
F(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 1*1*4*3*2*6 = 144 for even n, F(15) = a(2)*a(6)*a(10)*a(30) = 1*2*5*61 = 610 for odd n. For even n: log(a(12)) = mu(6)*log(F(2)) + mu(3)*log(F(4)) + mu(2)*log(F(6)) + mu(1)*log(F(12)) + mu(12)*log(L(1)) + mu(4)*log(L(3)) = 0 - log(3) - log(8) + log(144) + 0 + 0 = log(144/3/8) = log(6): a(12)=6. For odd n: log(a(15)) = mu(15)*log(L(1)) + mu(5)*log(L(3)) + mu(3)*log(L(5)) + mu(1)*log(L(15)) = 0 - log(4) - log(11) + log(1364) = log((1364/4)/11) = log(31) so a(15) = 31.
Programs
-
Mathematica
F[n_] := Fibonacci[n]; L[n_] := F[n + 1] + F[n - 1]; a[2] = 1; a[n_] := a[n] = If[ PrimeQ[n] || n == 1, L[n], If[ PrimeQ[n/2] && OddQ[n/2], F[n/2], If[ EvenQ[n], F[n]/b[n], a[2n] = F[n]/b[n]; F[2n]/c[2n]]]]; b[n_] := (d = Delete[ Divisors[n], -1]; p = 1; k = 1; l = Length[d]; While[k < l + 1, p = p*If[EvenQ[n], a[ d[[k]]], a[ 2d[[k]]]]; k++ ]; p); c[n_] := (d = Delete[Divisors[n], -2]; p = 1; k = 1; l = Length[d]; While[k < l + 1, p = p*a[ d[[k]]]; k++ ]; p); Table[ a[n], {n, 1, 50}]
Formula
Let h = (1+sqrt(5))/2, K(n, x) = n-th cyclotomic polynomial, so that x^n-1 = Product_{d|n}K(d, x); f(d) is the order of K(d, x). a(n) = (h-1)^f(n)*K(n, h+1).
For odd n: log(a(n)) = Sum_{d|n}mu(n/d)*log(L(d)). For even n: log(a(n)) = Sum_{d|n, d even}mu(n/d)*log(F(d)) + Sum_{d|n, d odd}mu(n/d)*log(L(d)).
Extensions
Edited and extended by Robert G. Wilson v and Vladeta Jovovic, Jul 02 2002
Comments