A072207 a(0) = 1; for n>0, a(n) = number of distinct sums of subsets of {1, 1/2, 1/3, 1/4, ..., 1/n} (allowing the empty subset).
1, 2, 4, 8, 16, 32, 52, 104, 208, 416, 832, 1664, 1856, 3712, 7424, 9664, 19328, 38656, 59264, 118528, 126976, 224128, 448256, 896512, 936832, 1873664, 3747328, 7494656, 7771136, 15542272, 15886336, 31772672, 63545344, 112064512, 224129024, 231010304, 237031424, 474062848, 948125696
Offset: 0
Keywords
Links
- Bert Dobbelaere, Table of n, a(n) for n = 0..83
- M. N. Bleicher and P. Erdős, The number of distinct subsums of sum 1..N 1/i, Math. Comp. 29 (1975), 29-42, Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday, see Front matter.
- Bert Dobbelaere, Python program
Crossrefs
Cf. A175952.
Programs
-
Maple
S[1]:= {0,1}: A[1]:= 2: for n from 2 to 30 do S[n]:= S[n-1] union (1/n +~ S[n-1]); A[n]:= nops(S[n]); od: seq(A[i],i=1..30); # Robert Israel, Nov 23 2016
-
Mathematica
w = {0}; o = {1}; s = 1; NumberOfApplications = 20; Do[w = Union[Flatten[{w - (1/s), w + (1/s)}]]; AppendTo[o, Length[w]]; ++s,{NumberOfApplications}];o (* Dylan Hamilton, Oct 28 2010 *)
-
PARI
M72207=List([[0]]); A072207(n)={for(k=#M72207, n, listput(M72207, setunion(Set([x+1/k|x<-M72207[k]]), M72207[k]))); #M72207[n+1]} \\ M. F. Hasler, Oct 29 2022
Formula
a(p) = 2 * a(p-1) for p prime. a(2*p) = 2 * a(2*p-1) for p>3 prime. - Giovanni Resta, Jul 18 2019
Extensions
More terms from Vladeta Jovovic, Jul 05 2002
Terms through a(32) from Sean A. Irvine, Nov 29 2010
Offset set to 0 and a(33)-a(38) from Giovanni Resta, Jul 20 2019
Comments